闻缺陷则喜何志丹

闻缺陷则喜何志丹

本文涉及知识点

图论 树 拓扑排序

LeetCode 2603. 收集树中金币

给你一个 n 个节点的无向无根树,节点编号从 0 到 n - 1 。给你整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间有一条边。再给你一个长度为 n 的数组 coins ,其中 coins[i] 可能为 0 也可能为 1 ,1 表示节点 i 处有一个金币。

一开始,你需要选择树中任意一个节点出发。你可以执行下述操作任意次:

收集距离当前节点距离为 2 以内的所有金币,或者
移动到树中一个相邻节点。
你需要收集树中所有的金币,并且回到出发节点,请你返回最少经过的边数。

如果你多次经过一条边,每一次经过都会给答案加一。

示例 1:
【图论】【树】 【拓扑排序】2603. 收集树中金币-LMLPHP

输入:coins = [1,0,0,0,0,1], edges = [[0,1],[1,2],[2,3],[3,4],[4,5]]
输出:2
解释:从节点 2 出发,收集节点 0 处的金币,移动到节点 3 ,收集节点 5 处的金币,然后移动回节点 2 。
示例 2:

【图论】【树】 【拓扑排序】2603. 收集树中金币-LMLPHP

输入:coins = [0,0,0,1,1,0,0,1], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[5,6],[5,7]]
输出:2
解释:从节点 0 出发,收集节点 4 和 3 处的金币,移动到节点 2 处,收集节点 7 处的金币,移动回节点 0 。

【图论】【树】 【拓扑排序】2603. 收集树中金币-LMLPHP

提示:

n == coins.length
1 <= n <= 3 * 10
0 <= coins[i] <= 1
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges 表示一棵合法的树。

拓扑排序

利用拓扑排序不断删除没有金币的叶子节点,不影响答案。
如果根节点没有金币且只有一个孩子,删除。它的孩子成为新的根。简便方式是直接选择有金币的节点为根。其实,拓扑排序后,不会存在这样的根。
一个子树cur有若干金币,且叶子节点的最早公共祖先是cur。则收集所有金币只需要:移动到叶子祖父节点,再回来。
如果cur是整个树的根,则收集结束。等于:除非叶子节点、非叶子节点父亲外所有节点 × \times ×*2。
如果不是根,cur 需要通过根收集金币,所以cur → \rightarrow root 路径上的边,也要来回一次。
对于任意cur,cur → \rightarrow parent 和parent → \rightarrow cur都只需要执行一次。
因为一次就可以收集所有金币。

题解

拓扑排序删除非金币节点后。

错误解法

DFS,返回cur距离叶子最远距离,如果>=2 ,则m_iRet+=2。注意:根节点不算,它没有父节点。DFS的时候排除已经被拓扑排序删除的节点。叶子节点到叶子节点的距离是0。果没有金币,直接返回0。错误原因:不同的根节点,结果不一样。

正确解法

删除叶子节点(无论是否有金币)两次。如果余下的节点为0,则返回0,否则返回( 剩余节点数-1) × \times × 2

代码

核心代码

class CTopSort
{
public:	
	template <class T = vector<int> >
	void Init(const vector<T>& vNeiBo,bool bDirect = true )
	{
		const int iDelOutDeg = bDirect ? 0 : 1;
		m_c = vNeiBo.size();
		m_vBackNeiBo.resize(m_c);
		vector<int> vOutDeg(m_c);
		for (int cur = 0; cur < m_c; cur++)
		{
			vOutDeg[cur] = vNeiBo[cur].size();	
			for (const auto& next : vNeiBo[cur])
			{
				m_vBackNeiBo[next].emplace_back(cur);
			}
		}
		vector<bool> m_vHasDo(m_c);
		queue<int> que;
		for (int i = 0; i < m_c; i++)
		{
			if ( vOutDeg[i] <= iDelOutDeg)
			{
				m_vHasDo[i] = true;
				if (OnDo(i)) {
					que.emplace(i);
				}
			}
		}

		while (que.size())
		{
			const int cur = que.front();
			que.pop();
			for (const auto& next : m_vBackNeiBo[cur])
			{
				if (m_vHasDo[next] )
				{
					continue;
				}				
				vOutDeg[next]--;
				if (vOutDeg[next] <= iDelOutDeg )
				{
					m_vHasDo[next] = true;
					if (OnDo(next)) {
						que.emplace(next);
					}
				}
			}
		};
	}
	int m_c;
protected:
	virtual bool OnDo( int cur) = 0;
	vector<vector<int>> m_vBackNeiBo;	
	
};

测试用例

template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<int> coins;
	vector<vector<int>> edges;
	{
		Solution sln;
		coins = { 1,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0 }, edges = { {0,1},{0,2},{1,3},{2,4},{2,5},{3,6},{3,7},{4,8},{7,9},{8,10},{10,11},{11,12},{7,13},{8,14},{9,15},{11,16},{13,17} };
		auto res = sln.collectTheCoins(coins, edges);
		Assert(10, res);
	}
	{
		Solution sln;
		coins = { 1,0,0,1,1,0,0,0,0,1,0,0 }, edges = { {0,1},{1,2},{1,3},{2,4},{4,5},{5,6},{5,7},{4,8},{7,9},{7,10},{10,11} };
		auto res = sln.collectTheCoins(coins, edges);
		Assert(4, res);
	}
	{
		Solution sln;
		coins = { 1,0,0,0,0,1 }, edges = { {0,1},{1,2},{2,3},{3,4},{4,5} };
		auto res = sln.collectTheCoins(coins, edges);
		Assert(2, res);
	}
	{
		Solution sln;
		coins = { 0,0,0,1,1,0,0,1 }, edges = { {0,1},{0,2},{1,3},{1,4},{2,5},{5,6},{5,7} };
		auto res = sln.collectTheCoins(coins, edges);
		Assert(2, res);
	}	
}

2023年4月

class Solution {
public:
int collectTheCoins(vector& coins, vector<vector>& edges) {
m_c = coins.size();
vector vDeg(m_c);
vector<vector> vNeiB(m_c);
for (const auto& v : edges)
{
vNeiB[v[0]].emplace_back(v[1]);
vNeiB[v[1]].emplace_back(v[0]);
vDeg[v[0]]++;
vDeg[v[1]]++;
}
std::queue que;
for (int i = 0; i < m_c; i++)
{
if ((0 == coins[i]) && (1 == vDeg[i]))
{
que.emplace(i);
}
}
//根据Top排序,依次删除没有金币的节点,自己和子节点没有金币的节点, 自己和子孙节点没金币的节点…
while (que.size())
{
int iCur = que.front();
que.pop();
for (const auto& next : vNeiB[iCur])
{
vDeg[next]–;
if ((0 == coins[next]) && (1 == vDeg[next]))
{
que.emplace(next);
}
}
vNeiB[iCur].clear();
}
//通过top排序生成平衡树,Dis为0,表示页节点;1表示离最近的叶节点为1
//访问所有完所有Dis为2的节点,可以收集所有金币
//每个叶子只有一个父节点,自然只有一个祖父节点。必须访问所有Dis为2的节点,否则它子孙的金币无法收集
//
//叶节点入队
vector vDis(m_c, 0);
for (int i = 0; i < m_c; i++)
{
if (1 == vDeg[i])
{
que.emplace(i);
}
}
if (que.size() <=1)
{
return 0;
}
while (que.size())
{
const int iCur = que.front();
que.pop();
for (const auto& next : vNeiB[iCur])
{
vDeg[next]–;
if (1 == vDeg[next])
{
que.emplace(next);
vDis[next] = vDis[iCur] + 1;
}
}
vNeiB[iCur].clear();
}
//
int iRet = -2;
for (int i = 0; i < m_c; i++)
{
if (vDis[i] >= 2)
{
iRet += 2;
}
}
return max(0,iRet);
}
int m_c;
};

2023年8月

class Solution {
public:
int collectTheCoins(vector& coins, vector<vector>& edges) {
m_c = coins.size();

	CNeiBo2 neiBo(m_c, edges, false);
	vector<int> vDeg(m_c);
	for (const auto& v : edges)
	{
		vDeg[v[0]]++;
		vDeg[v[1]]++;
	}
	std::queue<int> que,queCoins;//非金币叶子 金币叶子
	vector<int> vDel(m_c);
	for (int i = 0; i < m_c; i++)
	{
		if (1 == vDeg[i])
		{
			if (0 == coins[i])
			{
				que.emplace(i);					
			}
			else
			{
				queCoins.emplace(i);
			}
		}
	}

	while (que.size())
	{
		const int cur = que.front();
		que.pop();
		vDel[cur] = true;
		for (const auto& next : neiBo.m_vNeiB[cur])
		{
			vDeg[next]--;
			if (1 == vDeg[next])
			{
				if (0 == coins[next])
				{
					que.emplace(next);
				}
				else
				{
					queCoins.emplace(next);
				}
			}
		}
	}

	queue<int> queParent;
	while (queCoins.size())
	{
		const int cur = queCoins.front();
		queCoins.pop();
		vDel[cur] = true;
		for (const auto& next : neiBo.m_vNeiB[cur])
		{
			vDeg[next]--;
			if (1 == vDeg[next])
			{
				queParent.emplace(next);
				vDel[next] = true;
			}
		}
	}

	int iRet = 0;
	for (const auto& v : edges)
	{
		if (vDel[v[0]] || vDel[v[1]])
		{
			continue;
		}
		iRet += 2;
	}
	return iRet;
}
int m_c;

};

【图论】【树】 【拓扑排序】2603. 收集树中金币-LMLPHP

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

【图论】【树】 【拓扑排序】2603. 收集树中金币-LMLPHP

04-04 16:29