目录

1 复位类型

2 异步 FIFO 的复位


1 复位类型

        Xilinx FIFO Generator 提供了复位端口,用于复位计数器与输出寄存器。有两种复位的类型:同步复位(Synchronous Reset)和异步复位(Asynchronous Reset)。

【Xilinx FPGA】异步 FIFO 的复位-LMLPHP

        对于同步复位方式,由于复位信号已经是同步的,因此无需设计额外的同步逻辑。

        对于异步复位方式,复位信号会分别被同步到读/写时钟域,同步逻辑确保 FIFO 正确复位,避免“毛刺”或者亚稳态。

        

        异步复位应遵循以下 2 个设计规则:

(1)复位必须在所有时钟有效时进行,否则 FIFO 的状态无法预测;

(2)复位信号的脉宽至少为 3 个慢时钟周期。

【Xilinx FPGA】异步 FIFO 的复位-LMLPHP

        在复位期间,应避免对 fifo 进行读写操作,以防止数据丢失或损坏。在复位完成后,需要等待一段时间才能对 fifo 进行读写操作。

【Xilinx FPGA】异步 FIFO 的复位-LMLPHP

        开启 Safety Circuit 的 FIFO,复位释放之后需至少等待 60 个慢时钟周期。

【Xilinx FPGA】异步 FIFO 的复位-LMLPHP

        未开启 Safety Circuit 的 FIFO,复位释放之后需至少等待 30 个慢时钟周期。

2 异步 FIFO 的复位

        打开 IP 核自带的 Example Design,参考激励文件异步 FIFO 的复位逻辑。

【Xilinx FPGA】异步 FIFO 的复位-LMLPHP

        在 reset 释放之后 50 个写周期,释放 reset_ext 信号。reset 连接到 FIFO 的异步复位端口,reset_ext 则用于读/写控制逻辑的复位。

【Xilinx FPGA】异步 FIFO 的复位-LMLPHP

        在 Example Design 的顶层文件中,将 reset_ext 信号分别同步到读/写时钟域。这里不知道是不是参考工程的错误,rst_async_rd1 ~ rst_async_rd3 使用了同步复位,异步释放的方式。

【Xilinx FPGA】异步 FIFO 的复位-LMLPHP

        以下是根据参考工程,自己设计的异步 FIFO 的复位控制逻辑。

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity eth_rx_adjust is
   port(
      -- System level
      nRst                : in std_logic;
      sysclk              : in std_logic;

      -- GMII IN data port
      --gmii_rxd_rxctl    : in std_logic_vector(9 downto 0);
      --gmii_rxc          : in std_logic;
      eth_phy_rxd         : in std_logic_vector(7 downto 0);
      eth_phy_rxdv        : in std_logic;
      eth_phy_rxc         : in std_logic;

      -- eth_rx data
      eth_rxd_sys         : out std_logic_vector(7 downto 0);
      eth_rxdv_sys        : out std_logic
   );
end entity;
architecture behav of eth_rx_adjust is
-- internal component and signal declarations
component fifo_8bit_2048 is
   port(
      din                 : in std_logic_vector(7 downto 0);
      wr_en               : in std_logic;
      wr_clk              : in std_logic;
      full                : out std_logic;
      dout                : out std_logic_vector(7 downto 0);
      rd_en               : in std_logic;
      rd_clk              : in std_logic;
      empty               : out std_logic;
      rst                 : in std_logic;
      wr_data_count       : out std_logic_vector(10 downto 0);
      rd_data_count       : out std_logic_vector(10 downto 0)
   );
end component;

signal reset              : std_logic := '1';
signal reset_cnt          : std_logic_vector(5 downto 0) := (others => '0');
signal reset_ext_cnt      : std_logic_vector(5 downto 0) := (others => '0');
signal RESET_EXT          : std_logic := '1';
signal rst_async_wr1      : std_logic := '1';
signal rst_async_wr2      : std_logic := '1';
signal rst_async_wr3      : std_logic := '1';
signal rst_async_rd1      : std_logic := '1';
signal rst_async_rd2      : std_logic := '1';
signal rst_async_rd3      : std_logic := '1';
signal rst_int_wr         : std_logic := '1';
signal rst_int_rd         : std_logic := '1';

signal eth_fifo_wdata     : std_logic_vector(7 downto 0);
signal eth_fifo_wrreq     : std_logic;
signal eth_fifo_empty     : std_logic;
signal eth_fifo_rcnt      : std_logic_vector(10 downto 0);
signal eth_fifo_rdreq     : std_logic;
signal eth_fifo_rdata     : std_logic_vector(7 downto 0);
signal eth_fifo_rdvld     : std_logic;

attribute ASYNC_REG: string;
attribute ASYNC_REG of rst_async_wr1: signal is "true";
attribute ASYNC_REG of rst_async_wr2: signal is "true";
attribute ASYNC_REG of rst_async_wr3: signal is "true";

attribute ASYNC_REG of rst_async_rd1: signal is "true";
attribute ASYNC_REG of rst_async_rd2: signal is "true";
attribute ASYNC_REG of rst_async_rd3: signal is "true";

---------------------------------------------------------
begin
---------------------------------------------------------

process(nRst,eth_phy_rxc) 
begin
   if nRst = '0' then
      reset_cnt <= "000000";
   elsif rising_edge(eth_phy_rxc) then
      if reset_cnt < "001000" then
         reset_cnt <= reset_cnt + '1';
      else
         reset_cnt <= reset_cnt;
      end if;
   end if;
end process;

process(nRst,eth_phy_rxc) 
begin
   if nRst = '0' then
      reset <= '1';
   elsif rising_edge(eth_phy_rxc) then
      if reset_cnt < "001000" then
         reset <= '1';
      else
         reset <= '0';
      end if;
   end if;
end process;

process(reset,eth_phy_rxc) 
begin
   if reset = '1' then
      reset_ext_cnt <= "000000";
   elsif rising_edge(eth_phy_rxc) then
      if reset_ext_cnt < "110010" then
         reset_ext_cnt <= reset_ext_cnt + '1';
      else
         reset_ext_cnt <= reset_ext_cnt;
      end if;
   end if;
end process;

process(reset,eth_phy_rxc) 
begin
   if reset = '1' then
      RESET_EXT <= '1';
   elsif rising_edge(eth_phy_rxc) then
      if reset_ext_cnt < "110010" then
         RESET_EXT <= '1';
      else
         RESET_EXT <= '0';
      end if;
   end if;
end process;

-- Asynchronous reset, synchronous release for rst_async_wr1, rst_async_wr2, rst_async_wr3
process(RESET_EXT,eth_phy_rxc) 
begin
   if RESET_EXT = '1' then
      rst_async_wr1 <= '1';
      rst_async_wr2 <= '1';
      rst_async_wr3 <= '1';
   elsif rising_edge(eth_phy_rxc) then
      rst_async_wr1 <= RESET_EXT;
      rst_async_wr2 <= rst_async_wr1;
      rst_async_wr3 <= rst_async_wr2;
   end if;
end process;

-- Asynchronous reset, synchronous release for rst_async_rd1, rst_async_rd2, rst_async_rd3
process(RESET_EXT,sysclk) 
begin
   if RESET_EXT = '1' then
      rst_async_rd1 <= '1';
      rst_async_rd2 <= '1';
      rst_async_rd3 <= '1';
   elsif rising_edge(sysclk) then
      rst_async_rd1 <= RESET_EXT;
      rst_async_rd2 <= rst_async_rd1;
      rst_async_rd3 <= rst_async_rd2;
   end if;
end process;

rst_int_wr <= rst_async_wr3;
rst_int_rd <= rst_async_rd3;

--===============================================================
-- eth_fifo_inst
eth_fifo_instx: component fifo_8bit_2048
port map(
   din             => eth_fifo_wdata     , -- in std_logic_vector(7 downto 0)
   wr_en           => eth_fifo_wrreq     , -- in std_logic
   wr_clk          => eth_phy_rxc        , -- in std_logic
   full            => open               , -- out std_logic
   dout            => eth_fifo_rdata     , -- out std_logic_vector(7 downto 0)
   rd_en           => eth_fifo_rdreq     , -- in std_logic
   rd_clk          => sysclk             , -- in std_logic
   empty           => eth_fifo_empty     , -- out std_logic
   rst             => reset              , -- in std_logic
   wr_data_count   => open               , -- out std_logic_vector(10 downto 0)
   rd_data_count   => eth_fifo_rcnt        -- out std_logic_vector(10 downto 0)
);

process(rst_int_wr,eth_phy_rxc) 
begin
   if rst_int_wr = '1' then
      eth_fifo_wdata <= (others => '0');
      eth_fifo_wrreq <= '0';
   elsif rising_edge(eth_phy_rxc) then
      eth_fifo_wdata <= eth_phy_rxd;
      eth_fifo_wrreq <= eth_phy_rxdv;
   end if;
end process;

process(rst_int_rd,sysclk) 
begin
   if rst_int_rd = '1' then
      eth_fifo_rdreq <= '0';
      eth_fifo_rdvld <= '0';
   elsif rising_edge(sysclk) then
      if eth_fifo_rcnt > 6 then
         eth_fifo_rdreq <= '1';
      elsif eth_fifo_rcnt = 1 then
         eth_fifo_rdreq <= '0';
      end if;
      eth_fifo_rdvld <= eth_fifo_rdreq;
   end if;
end process;

process(rst_int_rd,sysclk) 
begin
   if rst_int_rd = '1' then
      eth_rxd_sys <= (others => '0');
      eth_rxdv_sys <= '0';
   elsif rising_edge(sysclk) then
      eth_rxd_sys <= eth_fifo_rdata;
      eth_rxdv_sys <= eth_fifo_rdvld;
   end if;
end process;
end architecture;
01-07 13:47