本文基于ZC706+FMCOMMS5的平台,介绍了多片AD9361同步的方法。并将该设计移植到自行设计的ZYNQ7035+4片AD9361(实现8路同步收发)的电路板上。
工程主要特点包括:
本设计采用纯逻辑的方式
1.4片AD9361组合,组成8通道发和8通道收
2.同步相位误差小于2度
3.实现了内部本振以及外部本振两种同步方式
4.外部本振方法同步校准时间小于3ms,内部本振同步校准时间小于450ms
5.工程采用纯PL实现,不需要PS参与

9361多芯片同步主要包括基带同步和射频同步两大块任务。其中基带采用AD9361自带的MCS功能实现。而射频同步分为两种方法,分别是内部本振法和外部本振法。

在正式介绍同步之前,先做一点准备工作,主要包括SPI驱动、AD9361初始化,外部本振芯片ADF5355的控制等。因为FMCOMMS5上两片9361以及ADF5355共用了SPI_CLK、SPI_DO、SPI_DI信号,所以还涉及到总线如何仲裁的问题。

SPI驱动
下面是FMCOMM5驱动的端口:

module fmcomms5_spi(
	input 				clk,
	input				rst_n,
	//avalon interface
	input		[2:0]	cs,	//[0]:AD9361_CHIP A;[1]:AD9361_CHIP B;[2]:ADF5355
	input 				read,
	input 				write,
	input 		[9:0] 	address,
	input 		[27:0] 	writedata,
	output 	reg [7:0]	readdata,
	output 	reg 		waitrequest,
	//SPI interface
	output	reg			spi_clk,
	output	reg			spi_csn0,//SPI_ENB_A
	output	reg			spi_csn1,//SPI_ENB_B
	output	reg			spi_csn2,//ADF5355_LE
	output	reg			spi_sdo,
	input				spi_sdi
);

这个模块将SPI总线转换成了Avalon总线,cs[0]选通AD9361-chip0;cs[1]选通AD9361-chip1;cs[2]选通ADF5355。cs[2]具有最高优先级,cs[1]和cs[0]具有相同的优先级。通过控制cs,可以实现分时写ADF5355、以及读写AD9361的寄存器(支持同时写和分时读2片AD9361)。
时序如下图:
AD9361多片同步设计方法-LMLPHP

avalon_mux:avalon总线多路复用
avalon_mux最大的作用是隔离各个功能代码,使各个模块看起来像是在独占SPI总线一样。这样便于设计代码层次结构以及区分功能模块。使每个想访问SPI的代码块都只需要设计一个avalon master接口,然后接到avalon_mux这个模块的一个avalon slave接口上即可。模块端口定义如下:

module avalon_mux #(parameter ADDR_WIDTH=256,DATA_WIDTH=256)
(
    input                           clk,
    input                           rst_n,

	input		[2:0]				s0_cs,
    input                           s0_read,
    input                           s0_write,
    input       [ADDR_WIDTH-1:0]    s0_address,
    input       [DATA_WIDTH-1:0]    s0_writedata,
    output  reg [DATA_WIDTH-1:0]    s0_readdata,
    output  reg                     s0_waitrequest,
    
	input		[2:0]				s1_cs,
    input                           s1_read,
    input                           s1_write,
    input       [ADDR_WIDTH-1:0]    s1_address,
    input       [DATA_WIDTH-1:0]    s1_writedata,
    output  reg [DATA_WIDTH-1:0]    s1_readdata,
    output  reg                     s1_waitrequest,
	
	/*
	此
	处
	有
	省
	略
	*/
	
	input		[2:0]				s7_cs,
    input                           s7_read,
    input                           s7_write,
    input       [ADDR_WIDTH-1:0]    s7_address,
    input       [DATA_WIDTH-1:0]    s7_writedata,
    output  reg [DATA_WIDTH-1:0]    s7_readdata,
    output  reg                     s7_waitrequest, 	

	output	reg	[2:0]				m_cs,
    output  reg                     m_read,
    output  reg                     m_write,
    output  reg [ADDR_WIDTH-1:0]    m_address,
    output  reg [DATA_WIDTH-1:0]    m_writedata,
    input       [DATA_WIDTH-1:0]    m_readdata,
    input                           m_waitrequest
);

有了这个模块的加持,最终看到的代码结构类似于这样:

    ad9361_init ad9361_init_inst0(
        .clk		(clk						),
        .rst_n		(rst_n						),
        .cs			(init0_cs					),
        .read		(init0_read					),
        .write		(init0_write				),
        .address	(init0_address				),
        .writedata	(init0_writedata			),
        .readdata	(init0_readdata				),
        .waitrequest(init0_waitrequest			));

    ad9361_init ad9361_init_inst1(
        .clk		(clk						),
        .rst_n		(rst_n						),
        .cs			(init1_cs					),
        .read		(init1_read					),
        .write		(init1_write				),
        .address	(init1_address				),
        .writedata	(init1_writedata			),
        .readdata	(init1_readdata				),
        .waitrequest(init1_waitrequest			));

	adf5355_init adf5355_init_inst(
		.clk		(clk						),
		.rst_n		(rst_n						),
		.cs			(adf5355_cs					),
		.write		(adf5355_write				),
		.address	(adf5355_address			),
		.writedata	(adf5355_writedata			),
		.waitrequest(adf5355_waitrequest		));	

	avalon_mux avalon_mux_inst(
		.clk            (clk					),
		.rst_n          (rst_n             		),
		.s0_cs			(init0_cs				),
		.s0_read        (init0_read         	),
		.s0_write       (init0_write         	),
		.s0_address     (init0_address			),
		.s0_writedata   (init0_writedata     	),
		.s0_readdata    (init0_readdata      	),
		.s0_waitrequest (init0_waitrequest   	),
		.s1_cs			(init1_cs				),
		.s1_read        (init1_read           	),
		.s1_write       (init1_write          	),
		.s1_address     (init1_address			),
		.s1_writedata   (init1_writedata      	),
		.s1_readdata    (init1_readdata       	),
		.s1_waitrequest (init1_waitrequest    	),
		.s1_cs			(adf5355_cs				),
		.s1_read        (adf5355_read           ),
		.s1_write       (adf5355_write          ),
		.s1_address     (adf5355_address		),
		.s1_writedata   (adf5355_writedata      ),
		.s1_readdata    (adf5355_readdata       ),
		.s1_waitrequest (adf5355_waitrequest    ),
		.m_cs			(m_cs					),
		.m_read         (m_read             	),
		.m_write        (m_write            	),
		.m_address      (m_address          	),
		.m_writedata    (m_writedata        	),
		.m_readdata     (m_readdata         	),
		.m_waitrequest  (m_waitrequest      	));  

    //spi driver      
    fmcomms5_spi fmcomms5_spi_inst(
        .clk			(clk					),
        .rst_n			(rst_n					),
		.cs				(m_cs					),
        .read			(m_read					),
        .write			(m_write				),
        .address		(m_address				),
        .writedata		(m_writedata			),        
        .readdata		(m_readdata				),
        .waitrequest    (m_waitrequest			),
        .spi_clk        (SPI_CLK				),
        .spi_csn0       (SPI_ENB_A				),
		.spi_csn1       (SPI_ENB_B				),
		.spi_csn2       (ADF5355_LE				),
        .spi_sdo        (SPI_DI					),
        .spi_sdi        (SPI_DO					));

其中两片AD9361的初始化、ADF5355的初始化都可以完全独立的设计实现,各个初始化模块只需要设计avalon的接口即可。而avalon接口到SPI就由avalon_mux和fmcomms5_spi 处理。

AD9361初始化
AD9361初始化相关内容见AD9361纯逻辑控制从0到1连载3-初始化模块以及相关文章。

ADF5355
有关ADF5355的配置可以参考下面代码:

/*初始化状态:
1.参数输入为40M,所有参考输入倍频分频器都设置为x1,使PFD = 40M
2.VCO输出3.66G,2分频输出,输出1.83G。对应9361的射频本振为915M
3.
*/
//reg0
parameter [0:0]		AUTOCAL = 1;				//autocal
parameter [0:0]		PRESCALER = 0;				//预分频器值;0=4/5;1=8/9;预分频器会限制INT值,当P为4/5时, NMIN为23;当P为8/9时, NMIN为75。
parameter [15:0]	INTEGER	= 91; 				//3660/40

//reg1
parameter [23:0]	FRAC1 = 8388608;			//(3660 mod 40)*2^24 = 0.5*(2^24)

//reg2
parameter [13:0]	FRAC2 = 0;					//14位辅助小数值(FRAC2)
parameter [13:0]	MOD2 = 1;					//14位辅助模数值(MOD2),FRAC2为0,MOD2随便取个值

//reg3
parameter [0:0]	 	SD_LOAD_RESET = 0;			//禁用写入寄存器0时, Σ-Δ调制器复位。对于相位持续调整的应用,可能不希望这样做。因此,在此类情况下,可将1写入SD1位(DB30)以禁用Σ-Δ复位。
parameter [0:0]		PHASE_RESYNC = 0;			//要使用相位再同步特性, 必须置1。
parameter [0:0]		PHASE_ADJUST = 0;			//要在每次寄存器0更新时调整ADF5355的相对输出相位,应将PA1位(DB28)设为1。与再同步特性不同,该特性适用于连续调整相位的应用。
parameter [23:0]	PHASE = 0;					//不做连续相位调整,相位值设置为0

//reg4
parameter [2:0]	 	MUXOUT = 3'b110; 			//101:analog lock detect;110:digital lock detect
parameter [0:0]		REF_DOUBLER = 0;			//当RD2位(DB26)设置为0时,参考频率信号直接馈入10位R计数器,倍频器禁用。当此位设置为1时,参考频率加倍,然后输入10位R计数器。
parameter [0:0]		RDIV2 = 0;					//当RDIV2位(DB25)设置为1时, R计数器与PFD之间将插入一个二分频触发器,以扩大参考频率最大输入速率。该功能在PFD输入端提供50%占空比信号。
parameter [9:0]		R_COUNTER= 1;				//10位R计数器,可以细分输入参考频率(REFIN)以产生PFD的参考时钟。分频比范围是1到1023。
parameter [0:0]		DOUBLER_BUF = 1;			//双缓冲使能(写寄存器0后才生效)
parameter [3:0]		CURRENT_SETTING= 4'b0010;	//为使杂散最低,推荐设置为0.9 mA。
parameter [0:0]		REF_MODE= 1;				//ADF5355支持使用差分或单端参考源。对于差分源,应将参考模式位(DB9)设为1;对于单端源,应设为0。
parameter [0:0]		MUX_LOGIC = 1;				//为了支持逻辑兼容性, MUXOUT可设置两个逻辑电平。U5位(DB8)设为0即选择1.8 V逻辑,设为1即选择3.3 V逻辑。
parameter [0:0]		PD_POLARITY= 1;				//如果使用无源环路滤波器或同相有源环路滤波器,应将DB7设置为1(正)。如果使用反相有源滤波器,应将其设置为0(负)。
parameter [0:0]		POWER_DOWN = 0;				//设置为1时,执行关断程序。 DB6设置为0时,频率合成器恢复正常工作。在软件关断模式下, ADF5355会保留寄存器中的所有信息。
parameter [0:0]		CP_THREE_STATE= 0;			//电荷泵进入三态模式。 DB5设置为0时,正常工作。
parameter [0:0]		COUNTER_RESET= 0;			//复位ADF5355的R计数器、 N计数器和VCO频段选择。当DB4设为1时, RF频率合成器N计数器、 R计数器和VCO频段选择复位。正常工作时, DB4应设置为0。

//reg5
parameter [27:0]	REG5_RESERVED = 28'h0080000;//寄存器5中的这些位保留,必须按照图43所示设置,使用十六进制字0x0080000。

//reg6
parameter [0:0]		GATED_BLEED = 0;			//渗漏电流可用于改善相位噪声和杂散,但它对锁定时间可能有影响。选通渗漏位BL10 (DB30)设置为1时,可确保渗漏电流直到数字锁定检测置位逻辑高电平时才开启。注意, 此功能要求使能数字锁定检测。
parameter [0:0]		NEGATIVE_BLEED = 1;			//对于大多数应用,建议使用恒定负渗漏,因为它能改善电荷泵的线性度,从而降低噪声和杂散。要使能负渗漏,应向BL9(位DB29)写入1;要禁用负渗漏,应向BL9(位DB29)写入0。
parameter [0:0]		FEED_BACK_SELECT = 1;		//D13(位DB24)选择从VCO输出到N计数器的反馈。 D13设置为1时,信号直接从VCO获得。此位设置为0时,信号从输出分频器的输出获得。这些分频器使得输出可涵盖较宽的频率范围(3.4 GHz至6.8 GHz)。当计数器使能且反馈信号从其输出获得时,两个独立配置PLL的RF输出信号同相。分频反馈在需要对信号进行正干涉以提高功率的一些应用中很有用。
parameter [2:0]		RF_DIVIDER_SELECT = 1;		//初始化为1,2分频输出
parameter [7:0]		CHARGE_PUMP_BLEED_CURRENT=7;//IBLEED值,值要确保4/N < IBLEED/ICP < 10/N,可优化器件的相位噪声和杂散水平。ICP前面设置为0.9mA了,N是PFD到VCO的倍频因子
parameter [0:0]		MTLD = 0;					//设置为1,则切断RF输出级的电源电流,直到数字锁定检测电路检测到器件实现锁定为止。
parameter [0:0]		RF_OUTB = 0;				//使能或禁用高频RF输出(RFOUTB)。 设置为0时,高频RF输出使能。 设置为1时,辅助RF输出禁用。
parameter [0:0]		RF_OUTA = 1;				//D3(位DB6)使能或禁用主RF输出(RFOUTA+/RFOUTA−)。 DB6设置为0时,主RF输出禁用。 DB6设置为1时,主RF输出使能。
parameter [1:0]		RF_OUT_POWER = 2'b10;		//D2和D1(位[DB5:DB4])设置主RF输出功率水平的值(参见图44)。0=-4dBm;1=-1dBm;2=2dBm;3=5dBm

//reg7
parameter [0:0]		LE_SYNC = 1;				//设置为1时,位DB25确保加载使能(LE)沿与参考输入频率的上升沿内部同步。该同步可防止参考与RF分频器同时在参考频率的下降沿加载的罕见情况(可能导致锁定时间延长)。
parameter [1:0]		LD_CYCLE_COUNT = 2'b00;		//LD5和LD4(位[DB9:DB8])设置锁定检测电路连续计数多少周期后才将锁定检测置位高电平
parameter [0:0]		LOL_MODE = 1;				//对于可能会移除参考(REFIN)的固定频率应用,例如定时应用,应将LOL(位DB7)设置为1。标准锁定检测电路假设REFIN始终存在,但对于定时应用,情况可能并非如此。此功能通过将DB7设置为1来使能。
parameter [1:0]		FRAC_N_LD_PRECISION = 2'b11;//LD3和LD2(位[DB6:DB5])设置小数N模式下锁定检测电路的精度。 LDP可设置为5 ns、 6 ns、 8 ns或12 ns。使用渗漏电流时,应使用12 ns。
parameter [0:0]		LD_MODE = 0;				//锁定检测模式(LDM)如果LD1(位DB4)设置为0,则每个参考周期由小数N锁定检测精度设置,如“小数N锁定检测计数(LDC)”部分所述。DB4设置为1时,各参考周期为2.9 ns长,这更适合整数N分频应用。

//reg8
parameter [27:0]	REG8_RESERVED = 28'h102D402;//此寄存器中的这些位保留,必须按照图46所示设置,使用十六进制字0x102D402

//reg9
parameter [7:0]		VCO_BAND_DIVISION = 17;			//VC8至VC1(位[DB31:DB24])设置VCO频段分频时钟的值。用PFD/(频段分频× 16)确定此时钟的值,使得结果小于150 kHz。
parameter [9:0]		TIMEOUT = 67;					//TL10至TL1(位[DB23:DB14])设置VCO频段选择的超时值。此值用作其他VCO校准设置中的变量。
parameter [4:0]		AUTOMATIC_LEVEL_TIMEOUT = 30;	//保证(TIMEOUT × AUTOMATIC_LEVEL_TIMEOUT/PFD频率) > 50 µs
parameter [4:0]		SYNTHESIZER_LOCK_TIMEOUT = 12;	//(TIMEOUT ×SYNTHESIZER_LOCK_TIMEOUT/PFD频率) > 20 µs

//reg10
parameter [7:0]		ADC_CLOCK_DIVIDER = 100;		//PFD/((ADC_CLK × 4) × 2) < 100 kHz
parameter [0:0]		ADC_CONVERSION = 1;				//AE2(位DB5)确保对寄存器10执行写操作后, ADC执行转换。建议使能这种模式。
parameter [0:0]		ADC_ENABLE = 1;					//AE1(位DB4)设置为1时, ADC上电以执行温度相关的VTUNE校准。建议总是使用该功能。

//reg11
parameter [27:0]	REG11_RESERVED = 28'h0061300;//此寄存器中的这些位保留,必须按照图49所示设置,使用十六进制字0x0061300

//reg12
parameter [15:0]	RESYNC_CLOCK = 0;//When not using phase resync, set these bits to 1 for normaloperation

function [31:0] adf5355_lut;
input [7:0] index;
	begin
		case(index)
			8'd0 :adf5355_lut={4'hc,RESYNC_CLOCK,12'b0000_0100_0001};
			8'd1 :adf5355_lut={4'hb,REG11_RESERVED};
			8'd2 :adf5355_lut={4'ha,18'b00_0000_0011_0000_0000,ADC_CLOCK_DIVIDER,ADC_CONVERSION,ADC_ENABLE};
			8'd3 :adf5355_lut={4'h9,VCO_BAND_DIVISION,TIMEOUT,AUTOMATIC_LEVEL_TIMEOUT,SYNTHESIZER_LOCK_TIMEOUT};
			8'd4 :adf5355_lut={4'h8,REG8_RESERVED};
			8'd5 :adf5355_lut={4'h7,6'b000100,LE_SYNC,15'd0,LD_CYCLE_COUNT,LOL_MODE,FRAC_N_LD_PRECISION,LD_MODE};
			8'd6 :adf5355_lut={4'h6,1'b0,GATED_BLEED,NEGATIVE_BLEED,4'b1010,FEED_BACK_SELECT,RF_DIVIDER_SELECT,CHARGE_PUMP_BLEED_CURRENT,1'b0,MTLD,RF_OUTB,3'b000,RF_OUTA,RF_OUT_POWER};
			8'd7 :adf5355_lut={4'h5,REG5_RESERVED};
			8'd8 :adf5355_lut={4'h4,2'b00,MUXOUT,REF_DOUBLER,RDIV2,R_COUNTER,DOUBLER_BUF,CURRENT_SETTING,REF_MODE,MUX_LOGIC,PD_POLARITY,POWER_DOWN,CP_THREE_STATE,COUNTER_RESET};
			8'd9 :adf5355_lut={4'h3,1'b0,SD_LOAD_RESET,PHASE_RESYNC,PHASE_ADJUST,PHASE};
			8'd10:adf5355_lut={4'h2,FRAC2,MOD2};
			8'd11:adf5355_lut={4'h1,4'b0000,FRAC1};
			8'd12:adf5355_lut={4'hf,28'd0};	//delay
			8'd13:adf5355_lut={4'h0,10'b0000000000,AUTOCAL,PRESCALER,INTEGER};
			default:adf5355_lut=32'hffffffff;
		endcase
	end
endfunction

初始化的方法就是依次执行adf5355_lut这个函数列表的指令,比如第一条指令是写{RESYNC_CLOCK,12’b0000_0100_0001}到4’hc这个寄存器。

如果需要动态修改ADF5355的频率,则执行下面的命令列表即可:

    function [31:0] cmd;
	input [7:0]  index;
	begin
		case(index)				
			0 :cmd={4'ha,18'h00300,ADC_CLOCK_DIVIDER,ADC_CONVERSION,ADC_ENABLE};
			1 :cmd={4'h4,2'b00,MUXOUT,REF_DOUBLER,RDIV2,R_COUNTER,DOUBLER_BUF,CURRENT_SETTING,REF_MODE,MUX_LOGIC,PD_POLARITY,POWER_DOWN,CP_THREE_STATE,1'b1};
			2 :cmd={4'h6,1'b0,GATED_BLEED,NEGATIVE_BLEED,4'b1010,FEED_BACK_SELECT,lo_div,CHARGE_PUMP_BLEED_CURRENT,1'b0,MTLD,RF_OUTB,3'b000,RF_OUTA,RF_OUT_POWER};			
			3 :cmd={4'h2,lo_frac2,lo_mod2};
			4 :cmd={4'h1,4'd0,lo_frac1};
			5 :cmd={4'h0,10'd0,1'b0,PRESCALER,lo_int};
			6 :cmd={4'h4,2'b00,MUXOUT,REF_DOUBLER,RDIV2,R_COUNTER,DOUBLER_BUF,CURRENT_SETTING,REF_MODE,MUX_LOGIC,PD_POLARITY,POWER_DOWN,CP_THREE_STATE,1'b0};
			7 :cmd={4'hf,28'd0};
			8 :cmd={4'h0,10'd0,AUTOCAL,PRESCALER,lo_int};
			default:cmd=32'hffffffff;
		endcase
	end
    endfunction

其中lo_div,lo_int,lo_frac1,lo_frac2,lo_mod2根据频率计算得出,具体计算方法由下面这个模块得到。

module adf5355_freq2param(
	input				clk,
	input				rst_n,
	input		[33:0]	lo_freq,

	output	reg	[2:0]	lo_div,	
	output	reg	[15:0]	lo_int,
	output	reg	[23:0]	lo_frac1,	
	output	reg	[13:0]	lo_frac2,
	output	reg	[13:0]	lo_mod2,
	output	reg			param_valid
);

ADI如何介绍同步?
Synchronizing multiple AD9361 devices

源码
链接:https://pan.baidu.com/s/18k0Oh6zbDXcPZaQ1RG6f-A?pwd=uw7b
提取码:uw7b
–来自百度网盘超级会员V4的分享

02-17 03:13