import random
import numpy as np
import pandas as pd
import torch
from transformers import BertModel,BertTokenizer
from tqdm.auto import tqdm
from torch.utils.data import Dataset
import re
"""参考Game-On论文"""
"""util.py"""
def set_seed(seed_value=42):
    random.seed(seed_value)
    np.random.seed(seed_value)
    # 用于设置生成随机数的种子
    torch.manual_seed(seed_value)
    torch.cuda.manual_seed_all(seed_value)
"""util.py"""

"""文本预处理-textGraph.py"""
# 文本DataSet类

def text_preprocessing(text):
    """
    - Remove entity mentions (eg. '@united')
    - Correct errors (eg. '&' to '&')
    @param    text (str): a string to be processed.
    @return   text (Str): the processed string.
    """
    # Remove '@name'
    text = re.sub(r'(@.*?)[\s]', ' ', text)

    # Replace '&' with '&'
    text = re.sub(r'&', '&', text)

    # Remove trailing whitespace
    text = re.sub(r'\s+', ' ', text).strip()

    # removes links
    text = re.sub(r'(?P<url>https?://[^\s]+)', r'', text)

    # remove @usernames
    text = re.sub(r"\@(\w+)", "", text)

    # remove # from #tags
    text = text.replace('#', '')

    return text

class TextDataset(Dataset):
    def __init__(self,df,tokenizer):
        # 包含推文的主文件框架
        self.df = df.reset_index(drop=True)

        # 使用的分词器
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()
        # 帖子的文本内容
        text = self.df['tweetText'][idx]
        # 作为唯一标识符的id ‘tweetId'
        unique_id = self.df['tweetId'][idx]

        # 创建一个空的列表来存储输出结果
        input_ids = []
        attention_mask = []
        # 使用tokenizer分词器
        encoded_sent = self.tokenizer.encode_plus(
            text = text_preprocessing(text), # 这里使用的是预处理的句子,而不是直接对原句子使用tokenizer
            add_special_tokens=True,        # 添加[CLS]以及[SEP]等特殊词元
            max_length=512,                 # 最大截断长度
            padding='max_length',            # padding的最大长度
            return_attention_mask=True,     # 返回attention_mask
            truncation=True                 #
        )
        # 获取编码效果
        input_ids = encoded_sent.get('input_ids')
        # 获取attention_mask结果
        attention_mask = encoded_sent.get('attention_mask')

        # 将列表转换成张量
        input_ids = torch.tensor(input_ids)
        attention_mask =torch.tensor(attention_mask)

        return {'input_ids':input_ids,'attention_mask':attention_mask,'unique_id':unique_id}

def store_data(bert,device,df,dataset,store_dir):
    lengths = []
    bert.eval()

    for idx in tqdm(range(len(df))):
        sample = dataset.__getitem__(idx)
        print('原始sample[input_ids]和sample[attention_mask]的维度:',sample['input_ids'].shape,sample['attention_mask'].shape)
        # 升维
        input_ids,attention_mask = sample['input_ids'].unsqueeze(0),sample['attention_mask'].unsqueeze(0)
        input_ids = input_ids.to(device)
        attention_mask = attention_mask.to(device)
        # 得到唯一标识属性
        unique_id = sample['unique_id']

        # 计算token的个数
        num_tokens = attention_mask.sum().detach().cpu().item()
        """不生成新的计算图,而是只做权重更新"""
        with torch.no_grad():
            out = bert(input_ids=input_ids,attention_mask=attention_mask)
        # last_hidden_state.shape是(batch_size,sequence_length,hidden_size)
        out_tokens = out.last_hidden_state[:,1:num_tokens,:].detach().cpu().squeeze(0).numpy() # token向量

        # 保存token级别表示
        filename = f'{emed_dir}{unique_id}.npy'

        try:
            np.save(filename, out_tokens)
            print(f"文件{filename}保存成功")
        except FileNotFoundError:
            # 文件不存在,创建新文件并保存
            np.save(filename, out_tokens)
            print(f"文件{filename}创建成功并保存成功")
        lengths.append(num_tokens)

        ## Save semantic/ whole text representation
        # 保存语义  也就是整个文本的表示
        out_cls = out.last_hidden_state[:,0,:].unsqueeze(0).detach().cpu().squeeze(0).numpy() ## cls vector
        filename = f'{emed_dir}{unique_id}_full_text.npy'
        # 尝试保存.npy文件,如果文件不存在则自动创建
        try:
            np.save(filename, out_cls)
            print(f"文件{filename}保存成功")
        except FileNotFoundError:
            # 文件不存在,创建新文件并保存
            np.save(filename, out_cls)
            print(f"文件{filename}创建成功并保存成功")
    return lengths

if __name__=='__main__':
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # 根目录
    root_dir = "./dataset/image-verification-corpus-master/image-verification-corpus-master/mediaeval2015/"
    emed_dir = './Embedding_File'
    # 文件路径
    train_csv_name = "tweetsTrain.csv"
    test_csv_name = "tweetsTest.csv"

    # 加载PLM和分词器
    tokenizer = BertTokenizer.from_pretrained('./bert/')
    bert = BertModel.from_pretrained('./bert/', return_dict=True)
    bert = bert.to(device)

    # 用于存储每个推文的Embedding
    store_dir ="Embed_Post/"

    # 创建训练数据集的Embedding表示
    df_train = pd.read_csv(f'{root_dir}{train_csv_name}')
    df_train = df_train.dropna().reset_index(drop=True)

    # 训练数据集的编码结果
    train_dataset = TextDataset(df_train,tokenizer)
    lengths = store_data(bert, device, df_train, train_dataset, store_dir)

    ## Create graph data for testing set
    # 为测试集创建Embedding表示
    df_test = pd.read_csv(f'{root_dir}{test_csv_name}')
    df_test = df_test.dropna().reset_index(drop=True)
    test_dataset = TextDataset(df_test, tokenizer)

    lengths = store_data(bert, device, df_test, test_dataset, store_dir)

"""文本预处理-textGraph.py"""

03-04 18:30