文章目录
一、SPI简介
上面的介绍来自于百度,只是对SPI的一个非常简单的介绍,下面我们来详细地介绍一下SPI。和我们之前在STM32外设系列OLED篇介绍的IIC一样,SPI也是一种通信方式,但是它和IIC有所不同,在最后我们也会做对比。
SPI通常需要以下四个引脚
- SCLK(SCK)
时钟线 - CS(NSS、CE、SSEL)
片选线 - MOSI
Master Output Slave Input,主设备数据输出,从设备数据输入。 - MISO
Master Input Slave Output,主设备数据输入,从设备数据输出。
上面也说了,SPI是一种同步通信方式,所以它有时钟线,时钟由主设备提供。CS为片选线,片选线用来区分和哪个从机进行交互,通常由主机来控制。通常片选线被拉低,代表该从机被选中。当总线上有两个从机地片选线被拉低时会产生错误。MOSI和MISO用来做数据传输线,如果我们去掉其中一根,那么SPI就变成了一个单工通信,也是可以的,所以SPI即使只有三根线,也可以使用。
下面我们简单看一下SPI的内部结构
不知道大家有没有发现亮点,MOSI和MISO构成了一个环,根据SPI内部结构示意图,我们来分析一下SPI的数据传输过程。
首先由主设备提供时钟信号,主设备将从设备的片选线拉低之后开始与从设备进行数据交互。主设备有一个移位寄存器。主设备发送数据时,主设备将要发送的数据写入移位寄存器,然后通过MOSI一位一位地发送给从机,数据可以是8位的,也可以是16位的,可以通过软件配置。发送时可以先发送高位,也可以先发送低位,但是需要保证主从机的设置是一致的。从机接收数据时,同时也会将自己地移位寄存器中的内容通过MISO发送给主机。也就是说,主机在给从机发送数据时,同时也会收到从机发送来地数据。很明显主机在发送数据时通过MISO接收到地从机发送来的数据是没有意义的,我们称之为虚拟数据,我们可以不进行接收。相应地,如果我们要从从机读取数据,我们需要发送相同字节的空数据,从机才会返回我们要读取的数据,这很有趣。
通过上面的介绍我们可以知道,SPI并不存在严格意义上的写操作或者读操作,主机在给从机发送数据时,从机也同时会返回相同字节的虚拟数据,主机在读取从机数据时,需要向从机发送相同字节的虚拟数据(可以是0XFF)。
简单总结一下SPI通信的特点
- 同步全双工。
- 支持一主多从。
- 只需要四根线,甚至三根线也可以实现单工通信。
- 数据传输速率快。
二、SPI的四种工作方式
SPI有四种工作方式,通过时钟极性(CPOL)和时钟相位(CPHA)区分。如果时钟极性(CPOL)等于0,那么时钟线在空闲状态下为低电平;时钟极性(CPOL)等于1,那么时钟线在空闲状态下为高电平。如果时钟相位(CPHA)等于0时,数据在时钟线的第一个跳变沿开始被采样;时钟极性(CPHA)为1时,数据在时钟线的第二个跳变沿被采样。如此,我们就有了四种排列组合的方式。
三、STM32的SPI通信
3.1 SPI内部结构分析
这里依旧是以大容量产品STM32F103ZET6为例,来介绍一下STM32的SPI通信。SPI1挂接在APB2总线,最高时钟频率为36MHz,SPI2和SPI3挂接在APB1总线,最高时钟频率为18MHz。
STM32F1的SPI接口提供两个主要功能,支持SPI协议或者I2S协议,默认是SPI协议。STM32F1的SPI时钟最高可达到36MHz,支持DMA功能。下面我们分析一下STM32F1的SPI内部结构图
- 波特率发生器
用来产生SCK时钟线的时钟信号,通过SPI_CR1中的BR[2:0]来配置分频因子。 - MOSI和MISO都连接到数据移位寄存器中,向外发送数据时,数据移位寄存器会以发送缓冲区为数据源,将数据一位一位地通过MOSI发送出去。当我们接收到数据时,移位寄存器会将MISO上的数据一位一位地存储到接收缓冲区。
- 一次接收或者发送的数据长度可以通过控制寄存器SPI_CR1的DFF来配置。
- 配置SPI_CR1的LSB FIRST来配置是高位先发送还是低位先发送。
其他的图上的一些寄存器这里就不再做介绍了。
3.2 SPI引脚
当然,SPI的引脚也支持重映射,中文参考手册中给出了SPI1和SPI3的重映射表,这里贴一下
针对每一个GPIO在不同情况下配置成什么模式,中文参考手册也给出了详细介绍。
四、SPI通信程序设计
这里针对程序设计并不给出实际应用实例,后续的STM32外设系列中会更新一个SPI外设——NRF24L01,会用到我们这里介绍的SPI。
4.1 SPI配置步骤
- 使能SPI以及对应的GPIO端口时钟并配置引脚的复用推挽输出;
- 初始化SPI结构体,包括数据帧长度、传输模式和数据传输顺序等;
- 使能SPI
- SPI数据传输
- 查看SPI传输状态
以上函数在库函数里都有定义,我们可以直接拿来用。
4.2 SPI初始化程序设计
/*
*==============================================================================
*函数名称:SPI2_Init
*函数功能:SPI初始化
*输入参数:无
*返回值:无
*备 注:无
*==============================================================================
*/
void SPI2_Init(void)
{
// 结构体定义
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
// 使能时钟
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB,ENABLE );
RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI2,ENABLE );
// 初始化GPIO
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15);
// 配置SPI结构体
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; // 设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工
SPI_InitStructure.SPI_Mode = SPI_Mode_Master; // 设置SPI工作模式:设置为主SPI
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; // 设置SPI的数据大小:SPI发送接收8位帧结构
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; //串行同步时钟的空闲状态为高电平
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; //串行同步时钟的第二个跳变沿(上升或下降)数据被采样
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; // NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; // 定义波特率预分频的值:波特率预分频值为256
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; // 指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始
SPI_InitStructure.SPI_CRCPolynomial = 7; // CRC值计算的多项式(大于1即可)
SPI_Init(SPI2, &SPI_InitStructure); // 根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器
SPI_Cmd(SPI2, ENABLE); // 使能SPI外设
SPI2_ReadWriteByte(0xff); // 启动传输
}
4.3 SPI传输速度设置函数
/*
*==============================================================================
*函数名称:SPI2_SetSpeed
*函数功能:设置SPI2传输速度
*输入参数:SPI_BaudRatePrescaler:SPI_BaudRatePrescaler_2/8/16/256分频
*返回值:无
*备 注:无
*==============================================================================
*/
void SPI2_SetSpeed(u8 SPI_BaudRatePrescaler)
{
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));
SPI2 -> CR1 &= 0XFFC7;
SPI2 -> CR1 |= SPI_BaudRatePrescaler; // 设置SPI2传输速度
SPI_Cmd(SPI2,ENABLE);
}
4.4 SPI读写数据函数
/*
*==============================================================================
*函数名称:SPI2_ReadWriteByte
*函数功能:SPI2读写数据
*输入参数:TxData:要发送的数据(写入的字节)
*返回值:读取到的字节
*备 注:无
*==============================================================================
*/
u8 SPI2_ReadWriteByte(u8 TxData)
{
u8 retry = 0;
while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET) // 检查指定的SPI标志位设置与否:发送缓存空标志位
{
retry ++;
if(retry > 200)
{
return 0;
}
}
SPI_I2S_SendData(SPI2,TxData); // 通过外设SPIx发送一个数据
retry = 0;
while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET)//检查指定的SPI标志位设置与否:接受缓存非空标志位
{
retry ++;
if(retry > 200)
{
return 0;
}
}
return SPI_I2S_ReceiveData(SPI2); // 返回通过SPIx最近接收的数据
}