我继续在学习《ML Lecture 23-1: Deep Reinforcement Learning by Hung-yi Lee》中的视频教程https://youtu.be/W8XF3ME8G2I?si=zEQ3qj_iXzZZ-n85,其中提到:
“”"
 Gradient Ascent  θ new  ← θ old  + η ∇ R ˉ θ old  = ∑ t = 1 T ∇ log ⁡ p ( a t ∣ s t , θ ) ∇ R ˉ θ ≈ 1 N ∑ n = 1 N R ( τ n ) ∇ log ⁡ P ( τ n ∣ θ ) = 1 N ∑ n = 1 N R ( τ n ) ∑ t = 1 T n ∇ log ⁡ p ( a t n ∣ s t n , θ ) = 1 N ∑ n = 1 N ∑ t = 1 T n R ( τ o n ) ∇ log ⁡ ‾ p ( a t n ∣ s t n , θ ) \begin{aligned} & \begin{array}{l} \text { Gradient Ascent } \\ \theta^{\text {new }} \leftarrow \theta^{\text {old }}+\eta \nabla \bar{R}_{\theta^{\text {old }}} \end{array} \quad=\sum_{t=1}^T \nabla \log p\left(a_t \mid s_t, \theta\right) \\ & \nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \nabla \log P\left(\tau^n \mid \theta\right)=\frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \sum_{t=1}^{T_n} \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) \\ & =\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} R\left(\tau_o^n\right) \nabla \underline{\log } p\left(a_t^n \mid s_t^n, \theta\right) \\ & \end{aligned}  Gradient Ascent θnew θold +ηRˉθold =t=1Tlogp(atst,θ)RˉθN1n=1NR(τn)logP(τnθ)=N1n=1NR(τn)t=1Tnlogp(atnstn,θ)=N1n=1Nt=1TnR(τon)logp(atnstn,θ)
“”"
“这里的 Gradient Ascent 的微分是很符合人类直觉的, R ( τ n ) R\left(\tau^n\right) R(τn)为正则会提升获得此次胜利的过程中采取的每一次动作的概率;而 R ( τ n ) R\left(\tau^n\right) R(τn)为负,则会降低这些动作出现的概率”,请问,这种说法正确吗

11-06 22:53