- Merge Sorted Array
You are given two integer arrays nums1
and nums2
, sorted in non-decreasing order, and two integers m
and n
, representing the number of elements in nums1
and nums2
respectively.
Merge nums1
and nums2
into a single array sorted in non-decreasing order.
The final sorted array should not be returned by the function, but instead be *stored inside the array *nums1
. To accommodate this, nums1
has a length of m + n
, where the first m
elements denote the elements that should be merged, and the last n
elements are set to 0
and should be ignored. nums2
has a length of n
.
Example 1:
**Input:** nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
**Output:** [1,2,2,3,5,6]
**Explanation:** The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [<u>1</u>,<u>2</u>,2,<u>3</u>,5,6] with the underlined elements coming from nums1.
Example 2:
**Input:** nums1 = [1], m = 1, nums2 = [], n = 0
**Output:** [1]
**Explanation:** The arrays we are merging are [1] and [].
The result of the merge is [1].
Example 3:
**Input:** nums1 = [0], m = 0, nums2 = [1], n = 1
**Output:** [1]
**Explanation:** The arrays we are merging are [] and [1].
The result of the merge is [1].
Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.
Constraints:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-10^9 <= nums1[i], nums2[j] <= 10^9
**Follow up: **Can you come up with an algorithm that runs in O(m + n)
time?
Idea
根据约束条件,我们知道num1长度比num2长,逆向比较填充nums1数组
假设存m,n两个指针,分别指向nums1,numbs尾部
比较2个指针对应元素值的大小,不断将最大值移到nums1的后面
如果nums1[m] > nums2[n] ,将nums1[m]移动到 nums1的后面,m-1
如果nums1[m] < nums2[n] ,将nums2[n]移动到 nums1的后面,n-1
如果nums1的元素都比较完了,即m < 0, 只需要将 nums2剩下的元素依次搬进nums1
如果nums2的元素都比较完了,即n < 0,由于存在nums1中的元素已经有序,直接结束
JavaScript Solution
/**
* @param {number[]} nums1
* @param {number} m
* @param {number[]} nums2
* @param {number} n
* @return {void} Do not return anything, modify nums1 in-place instead.
*/
var merge = function(nums1, m, nums2, n) {
let last = m + n - 1;
while(m > 0 || n > 0 ){
// 只剩下nums2元素,依次搬入nums1的前面
if( m < 1 ){
nums1[last--] = nums2[n - 1]
n --
}
// 只剩下nums1剩下的元素,直接结束流程
if( n < 1 ){
break;
}
// 比较大小,将大的元素搬到nums1后面
if(nums1[m-1] > nums2[n-1]){
nums1[last--] = nums1[m - 1]
m -- ;
}else{
nums1[last--] = nums2[n - 1]
n --;
}
}
return nums1
};