【题目链接】 http://poj.org/problem?id=3608
【题目大意】
求出两个凸包之间的最短距离
【题解】
我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点画线,
做旋转卡壳,答案一定包含在这个过程中
【代码】
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
double EPS=1e-10;
const double INF=0x3F3F3F3F;
const double PI=acos(-1.0);
double add(double a,double b){
if(abs(a+b)<EPS*(abs(a)+abs(b)))return 0;
return a+b;
}
struct P{
double x,y;
P(){}
P(double x,double y):x(x),y(y){}
P operator + (P p){return P(add(x,p.x),add(y,p.y));}
P operator - (P p){return P(add(x,-p.x),add(y,-p.y));}
P operator * (double d){return P(x*d,y*d);}
double dot(P p){return add(x*p.x,y*p.y);} //点积
double det(P p){return add(x*p.y,-y*p.x);} //叉积
};
bool cmp_y(const P& p,const P& q){
if(p.y!=q.y)return p.y<q.y;
return p.x<q.x;
}
double dist(P p,P q){return sqrt((p-q).dot(p-q));}
double cross(P a, P b,P c){return(b-a).det(c-a);}
double multi(P a,P b,P c){return(b-a).dot(c-a);}
// 点到线段距离
double point_to_line(P a,P b,P c){
if(dist(a,b)<EPS)return dist(b,c);
if(multi(a,b,c)<-EPS)return dist(a,c);
if(multi(b,a,c)<-EPS)return dist(b,c);
return fabs(cross(a,b,c)/dist(a,b));
}
// 线段到线段距离
double line_to_line(P A,P B,P C,P D){
double a=point_to_line(A,B,C);
double b=point_to_line(A,B,D);
double c=point_to_line(C,D,A);
double d=point_to_line(C,D,B);
return min(min(a,b),min(c,d));
}
void anticlockwise_sort(P* p,int N){
for(int i=0;i<N-2;i++){
double tmp=cross(p[i],p[i+1],p[i+2]);
if(tmp>EPS)return;
else if(tmp<-EPS){
reverse(p,p+N);
return;
}
}
}
const int MAX_N=10000;
int n,m;
P ps[MAX_N],qs[MAX_N];
void solve(){
for(int i=0;i<n;i++)scanf("%lf%lf",&ps[i].x,&ps[i].y);
for(int i=0;i<m;i++)scanf("%lf%lf",&qs[i].x,&qs[i].y);
anticlockwise_sort(ps,n);
anticlockwise_sort(qs,m);
int i=0,j=0;
for(int k=0;k<n;k++)if(!cmp_y(ps[i],ps[k]))i=k;
for(int k=0;k<n;k++)if(cmp_y(qs[j],qs[k]))j=k;
double res=INF;
ps[n]=ps[0]; qs[m]=qs[0];
for(int k=0;k<n;k++){
while(cross(ps[i+1],qs[j+1],ps[i])-cross(ps[i+1],qs[j],ps[i])>EPS)j=(j+1)%m;
res=min(res,line_to_line(ps[i],ps[i+1],qs[j],qs[j+1]));
i=(i+1)%n;
}printf("%.5lf\n",res);
}
int main(){
while(~scanf("%d%d",&n,&m)&&n+m)solve();
return 0;
}