C++进阶之路---手撕“红黑树”-LMLPHP

顾得泉:个人主页

个人专栏:《Linux操作系统》 《C++从入门到精通》  《LeedCode刷题》

键盘敲烂,年薪百万!


一、红黑树的概念与性质

1.概念

C++进阶之路---手撕“红黑树”-LMLPHP

2.性质


二、红黑树结构

       为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

C++进阶之路---手撕“红黑树”-LMLPHP


三、红黑树的相关实现

1. 红黑树节点的定义

       想要实现一颗红黑树 ,首先我们得有树的节点,而树的节点中我们需要存:该节点的父节点、该节点的右孩子、该节点的左孩子、树节点的颜色以及数据类型;代码如下:

enum COLOUR
{
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _parent;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	COLOUR _col;
	pair<K, V> _kv;

	RBTreeNode(const pair<K, V>& kv)
		:_parent(nullptr)
		, _left(nullptr)
		, _right(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

2. 红黑树的定义

红黑树的定义如下:

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;

private:
	Node* _root = nullptr;
};

3. 红黑树的插入

       因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

       约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一

       cur为红,p为红,g为黑,u存在且为红

C++进阶之路---手撕“红黑树”-LMLPHP

情况二

       cur为红,p为红,g为黑,u不存在/u存在且为黑

C++进阶之路---手撕“红黑树”-LMLPHP

情况三

       cur为红,p为红,g为黑,u不存在/u存在且为黑

C++进阶之路---手撕“红黑树”-LMLPHP

4.代码实现

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		// 找到插入位置
		Node* cur = _root, * parent = nullptr;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first > cur->_kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;

			//     g
			//   p   u
			// c
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;

				// 情况1、uncle 存在且为红
				// 不需要旋转
				if (uncle && uncle->_col == RED)
				{
					// 变色	
					parent->_col = BLACK;
					uncle->_col = BLACK;

					grandfather->_col = RED;

					// 继续往上更新处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					// 情况2.1
					// 单旋
					//     g
					//   p
					// c
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					// 情况3.1
					// 双旋
					//     g
					//   p
					//     c
					else
					{
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			// grandfather->_right == parent
			//     g
			//   u   p
			//         c
			else
			{
				Node* uncle = grandfather->_left;

				// uncle 存在且为红
				// 不需要旋转
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = BLACK;
					uncle->_col = BLACK;

					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				// uncle 存在且为黑 或者 uncle 不存在
				else
				{
					// 情况2.2
					// 单旋
					//     g
					//   u   p 
					//         c
					if (cur == parent->_right)
					{
						RotateL(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					// 情况3.2
					// 双旋
					//     g
					//   u   p 
					//     c
					else
					{
						RotateR(parent);
						RotateL(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		// 最后保证根节点是黑色的
		_root->_col = BLACK;
		return true;
	}
	// 判断中序遍历是否为有序序列
	void Inorder()
	{
		_Inorder(_root);
		cout << endl;
	}
	// 判断是否平衡
	bool IsBalance()
	{
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
			return false;

		// 先统计一条路径的黑色节点,与其它路径的比较
		int refVal = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				refVal++;
			}
			cur = cur->_left;
		}
		int blacknum = 0;
		return Check(_root, blacknum, refVal);
	}
	// 获取树的高度
	int Height()
	{
		return _Height(_root);
	}
	// 获取树的节点数
	size_t Size()
	{
		return _Size(_root);
	}	
	// 查找
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return NULL;
	}
private:
	// 获取树的节点个数
	size_t _Size(Node* root)
	{
		if (root == NULL)
			return 0;

		return _Size(root->_left)
			+ _Size(root->_right) + 1;
	}
	// 获取树的高度
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}
	
	// 检查是否符合红黑树规则
	bool Check(Node* root, int blacknum, int refVal)
	{
		if (root == nullptr)
		{
			if (blacknum != refVal)
			{
				cout << "存在黑色节点数量不相等的路径" << endl;
				return false;
			}
			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "有连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blacknum++;
		}

		return Check(root->_left, blacknum, refVal)
			&& Check(root->_right, blacknum, refVal);
	}
	
	// 按中序遍历打印树的节点
	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << " ";
		_Inorder(root->_right);
	}

	// 左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right, * subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		subR->_left = parent;

		Node* parentParent = parent->_parent;
		parent->_parent = subR;
		// 如果 parent 是根节点,就直接更新 subR 为根节点,并将 subR 的_parent指向空
		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}

		// 否则,先判断 parent 是 parentParent 的右还是左,再将parentParent的左或者右连接subR
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	// 右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left, * subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;

		Node* parentParent = parent->_parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}
private:
	Node* _root = nullptr;
};

四、红黑树与AVL树的比较     

       红黑树和AVL树都是自平衡二叉查找树,它们都能在插入和删除操作后通过旋转来维持树的平衡,保证查找、插入和删除操作的时间复杂度大致为( O(\log n) )。然而,它们在实现方式和具体性能上存在一些差异:

平衡性:

旋转操作:

空间开销:

应用场景:


结语:C++关于如何实现红黑树的分享到这里就结束了,希望本篇文章的分享会对大家的学习带来些许帮助,如果大家有什么问题,欢迎大家在评论区留言~~~ 

03-19 08:32