测试代码

在结果导向的今天,切勿眼高于顶,不论用任何方法能转换、拿出实际成果东西才是关键,即使一个制作很简易的程序,你想将其最终生成可运行的版本也是需要下一番功夫的。不要努力成为一个嘴炮成功者,要努力成为一个有价值的人。

# encoding: utf-8
import random
import time
import tkinter as tk
from tkinter import messagebox   #导入弹窗库
from math import sin, cos, pi, log,tan
from tkinter import *
############参数修改#####################
CANVAS_WIDTH = 640  # 画布的宽
CANVAS_HEIGHT = 480  # 画布的高
CANVAS_CENTER_X = CANVAS_WIDTH / 2  # 画布中心的X轴坐标
CANVAS_CENTER_Y = CANVAS_HEIGHT / 2  # 画布中心的Y轴坐标
IMAGE_ENLARGE = 11  # 放大比例
HEART_COLOR = "#e86184"  # 心的颜色

WINDOWS_TITLE = 'I Love You'  # 窗口标题
HEART_CENTER_TEXT = 'Lara'  # 中间文字
HEART_CENTER_TEXT_COLOR = '#FFD700'  # 中间文字颜色

#################爱心函数########################
def heart_function(t, shrink_ratio: float = IMAGE_ENLARGE):
    # 基础函数
    x = 14.6 * (sin(t) ** 3)
    y = -(14.5 * cos(t) - 4 * cos(2 * t) - 2 * cos(3 * t) - 0.5 * cos(4 * t))

    # 放大
    x *= shrink_ratio
    y *= shrink_ratio

    # 移到画布中央
    x += CANVAS_CENTER_X
    y += CANVAS_CENTER_Y

    return int(x), int(y)


#################爱心内部的扩散情况########################
#调整beta可以调整扩散情况
def scatter_inside(x, y, beta=0.15):

    ratio_x = - beta * log(random.random())
    ratio_y = - beta * log(random.random())

    dx = ratio_x * (x - CANVAS_CENTER_X)
    dy = ratio_y * (y - CANVAS_CENTER_Y)

    return x - dx, y - dy

#################抖动情况########################
def shrink(x, y, ratio):
    force = -1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.6)  # 这个参数...
    dx = ratio * force * (x - CANVAS_CENTER_X)
    dy = ratio * force * (y - CANVAS_CENTER_Y)
    return x - dx, y - dy

#################爱心跳动函数########################
# https://cubic-bezier.com/ 贝塞尔参数网站,参考值为: curve(p, (.4, .5, .2, .6))
def heart_curve(p):
    return curve(p, (.4, .5, .2, .6))  # 爱心的贝塞尔曲线参数

#################光环跳动函数########################
# https://cubic-bezier.com/ 贝塞尔参数网站,参考值为: curve(p, (.73,.55,.59,.92))
def heart_halo_curve(p):
    return curve(p, (.73,.55,.59,.92))  #光环的贝塞尔曲线参数

#################跳动模式的调整########################
def curve(p, b):
    t = sin(p)

    p0 = b[0]
    p1 = b[1]
    p2 = b[2]
    p3 = b[3]

    t1 = (1 - t)
    t2 = t1 * t1
    t3 = t2 * t1
    # 贝塞尔模式
    # r = p0 * t3 + 3 * p1 * t * t2 + 3 * p2 * t * t * t1 + p3 * (t ** 3)
    # 三角函数模式
    r = 2 * (2 * sin(4 * p)) / (2 * pi)
    return r

#################创建一个心的类########################
class Heart:
    def __init__(self, generate_frame=20):
        self._points = set()  # 原始爱心坐标集合
        self._edge_diffusion_points = set()  # 边缘扩散效果点坐标集合
        self._center_diffusion_points = set()  # 中心扩散效果点坐标集合
        self.all_points = {}  # 每帧动态点坐标
        self.build(2000)  # 初始的点数,不宜过大

        self.generate_frame = generate_frame
        for frame in range(generate_frame):
            self.calc(frame)

    def build(self, number):
        # 爱心
        for _ in range(number):
            t = random.uniform(0, 2 * pi)
            x, y = heart_function(t)
            self._points.add((x, y))

        # 爱心内扩散
        for _x, _y in list(self._points):
            for _ in range(3):
                x, y = scatter_inside(_x, _y, 0.05)
                self._edge_diffusion_points.add((x, y))

        # 爱心内再次扩散
        point_list = list(self._points)
        for _ in range(4000):
            x, y = random.choice(point_list)
            x, y = scatter_inside(x, y, 0.24)  # 调整爱心的散点数量,参考值:0.24
            self._center_diffusion_points.add((x, y))

    @staticmethod
    def calc_position(x, y, ratio):
        # 调整缩放比例
        force = 1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.47)  # 魔法参数

        dx = ratio * force * (x - CANVAS_CENTER_X) + random.randint(-1, 1)
        dy = ratio * force * (y - CANVAS_CENTER_Y) + random.randint(-1, 1)

        return x - dx, y - dy

    def calc(self, generate_frame):
        ratio = 10 * heart_curve(generate_frame / 10 * pi)  # 圆滑的周期的缩放比例

        halo_radius = int(4 + 6 * (1 + heart_halo_curve(generate_frame / 10 * pi)))
        halo_number = int(3000 + 4000 * abs(heart_halo_curve(generate_frame / 10 * pi) ** 2))

        all_points = []

        # 光环
        heart_halo_point = set()  # 光环的点坐标集合
        for _ in range(halo_number):
            t = random.uniform(0, 2 * pi)
            x, y = heart_function(t, shrink_ratio=heart_halo_curve(generate_frame / 10 * pi) + 11)
            x, y = shrink(x, y, halo_radius)
            if (x, y) not in heart_halo_point:
                heart_halo_point.add((x, y))
                random_int_range = int(27 + heart_halo_curve(generate_frame / 10 * pi) * 4)
                x += random.randint(-random_int_range, random_int_range)
                y += random.randint(-random_int_range, random_int_range)
                size = random.choice((1, 1, 2))
                all_points.append((x, y, size))

        # 轮廓
        for x, y in self._points:
            x, y = self.calc_position(x, y, ratio)
            size = random.randint(1, 3)
            all_points.append((x, y, size))

        # 内容
        for x, y in self._edge_diffusion_points:
            x, y = self.calc_position(x, y, ratio)
            size = random.randint(1, 2)
            all_points.append((x, y, size))

        for x, y in self._center_diffusion_points:
            x, y = self.calc_position(x, y, ratio)
            size = random.randint(1, 2)
            all_points.append((x, y, size))

        self.all_points[generate_frame] = all_points

    def render(self, render_canvas, render_frame):
        for x, y, size in self.all_points[render_frame % self.generate_frame]:
            render_canvas.create_rectangle(x, y, x + size, y + size, width=0, fill=HEART_COLOR)

    def frame_count(self):
        return self.generate_frame

#################绘制函数########################
def draw(main: Tk, render_canvas_dict: dict, render_heart: Heart, render_frame=0):
    frame_index = render_frame % render_heart.frame_count()
    last_frame_index = (frame_index + render_heart.frame_count() - 1) % render_heart.frame_count()
    if last_frame_index in render_canvas_dict:
        render_canvas_dict[last_frame_index].pack_forget()
    if frame_index not in render_canvas_dict:

        canvas = Canvas(
            main,
            bg='black',  # 背景颜色
            height=CANVAS_HEIGHT,
            width=CANVAS_WIDTH
        )
        canvas.pack()

        render_heart.render(canvas, render_frame)
        canvas.create_text(
            CANVAS_CENTER_X,
            CANVAS_CENTER_Y,
            text=HEART_CENTER_TEXT,
            fill=HEART_CENTER_TEXT_COLOR,
            font=('楷体', 48, 'bold')  # 字体
        )

        render_canvas_dict[frame_index] = canvas
    else:
        render_canvas_dict[frame_index].pack()

    main.after(
        10,  # 画面切换间隔时间
        draw, main, render_canvas_dict, render_heart, render_frame + 1)

def dow():
    window = tk.Tk()
    width = window.winfo_screenwidth()
    height = window.winfo_screenheight()
    a = random.randrange(0, width)
    b = random.randrange(0, height)
    window.title('Hello')
    window.geometry("200x50" + "+" + str(a) + "+" + str(b))
    tk.Label(window,text='我永远爱你', bg='Red', font=('楷体', 17), width=15, height=2).pack()

answer="no"
if __name__ == '__main__':
    start_time = time.time()
    i = 1
    while answer == "no":  # while 循环,当answer值为no时就一直循环
        # 调用方法弹出"提问弹窗",标题为"回答",问题为"你是不是猪?",并判断此方法的返回值
        if messagebox.askquestion("问题", "你爱我吗?") == "yes":  # 如果返回值为"yes"
            messagebox.showinfo("Me,too", "我也爱你。")  # 就弹出"提示窗口"
            answer = "yes"  # 然后把answer的值改为yes,即结束循环(这里也可以直接用break)
        else:
            messagebox.showinfo("?", "你是傻瓜吗?,再给你1次机会。")  # 就弹出"提示窗口"
            i = i + 1
            if i > 3:
                i=i%3
                messagebox.showinfo("桑心", "你失去我了,再见!")
                time.sleep(5)
                messagebox.showinfo("哈哈", "开玩笑的,这次不要再选错了。")
    root = Tk()  # 绘制Tk界面
    root.title(WINDOWS_TITLE)
    root.attributes("-topmost",1)
    scrnW = root.winfo_screenwidth()
    scrnH = root.winfo_screenheight()

    width = root.winfo_width()
    height = root.winfo_height() # 屏幕分辨率
    left= (scrnW - width) / 2-320
    top= (scrnH - height) / 2-240
    root.geometry('+%d+%d' % (left, top)) # 居中
    canvas_dict = {}
    heart = Heart(40)  # 40帧为最佳
    draw(root, canvas_dict, heart)  # 绘制
    end_time = time.time()
    root.mainloop()
 

09-27 07:30