论文:gamma校正的快速算法及其c语言实现

gamma变换实现过程

  假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤:

  1. 归一化 :将像素值转换为  0 ~ 1  之间的实数。 算法如下 : ( i + 0. 5)/256  这里包含 1 个除法和 1 个加法操作。对于像素  A  而言  , 其对应的归一化值为  0. 783203 。

  2. 预补偿 :根据公式  , 求出像素归一化后的 数据以  1 /gamma  为指数的对应值。这一步包含一个 求指数运算。若  gamma  值为  2. 2 ,  则  1 /gamma  为  0. 454545 , 对归一化后的  A  值进行预补偿的结果就 是  0. 783203 ^0. 454545 = 0. 894872 。

  3. 反归一化 :将经过预补偿的实数值反变换为  0  ~  255  之间的整数值。具体算法为 : f*256 - 0. 5  此步骤包含一个乘法和一个减法运算。续前 例  , 将  A  的预补偿结果  0. 894872  代入上式  , 得到  A  预补偿后对应的像素值为  228 , 这个  228  就是最后送 入显示器的数据。

  如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 gamma 校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。

  针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围  , 例如  , 0 ~ 255 之间的整数  , 则图像中任何一个像素值只能 是  0  到  255  这  256  个整数中的某一个 ; 在  gamma 值 已知的情况下  ,0 ~ 255  之间的任一整数  , 经过“归一 化、预补偿、反归一化”操作后 , 所对应的结果是唯一的  , 并且也落在  0 ~ 255  这个范围内。

  如前例  , 已知  gamma  值为  2. 2 , 像素  A  的原始值是  200 , 就可求得 经  gamma  校正后  A  对应的预补偿值为  228 。基于上述原理  , 我们只需为  0 ~ 255  之间的每个整数执行一次预补偿操作  , 将其对应的预补偿值存入一个预先建立的  gamma  校正查找表 (LUT:Look Up Table) , 就可以使用该表对任何像素值在  0 ~ 255  之 间的图像进行  gamma  校正。

gamma变换实现

  #include <math.h>

  typedef unsigned char UNIT8; //用 8 位无符号数表示 0~255 之间的整数
UNIT8 g_GammaLUT[];//全局数组:包含256个元素的gamma校正查找表
//Buildtable()函数对0-255执行如下操作:
//①归一化、预补偿、反归一化;
//②将结果存入 gamma 查找表。
//从公式得fPrecompensation=1/gamma
void BuildTable(float fPrecompensation )
{
int i;
float f;
for( i=;i<;i++)
{
f=(i+0.5F)/;//归一化
f=(float)pow(f,fPrecompensation);
g_GammaLUT[i]=(UNIT8)(f*-0.5F);//反归一化
}
} void GammaCorrectiom(UNIT8 src[],int iWidth,int iHeight,float fGamma,UNIT8 Dst[])
{
int iCols,iRows;
BuildTable(/fGamma);//gamma校正查找表初始化
//对图像的每个像素进行查找表矫正
for(iRows=;iRows<iHeight;iRows++)
{
for(iCols=;iCols<iWidth;iCols++)
{
Dst[iRows*iWidth+iCols]=g_GammaLUT[src[iRows*iWidth+iCols]];
}
}
}

测试效果

1. 1/fGamma = 0.4,fGamma = 2.5

【数字图像处理】gamma变换-LMLPHP

2. 1/fGamma = 2.5,fGamma = 0.4

【数字图像处理】gamma变换-LMLPHP

refer:https://blog.csdn.net/u013625961/article/details/54375010

05-18 19:34