DZY Loves Math
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 1303 Solved: 819
[Submit][Status][Discuss]
Description
对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。
给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。
Input
第一行一个数T,表示询问数。
接下来T行,每行两个数a,b,表示一个询问。
Output
对于每一个询问,输出一行一个非负整数作为回答。
Sample Input
4
7558588 9653114
6514903 4451211
7425644 1189442
6335198 4957
7558588 9653114
6514903 4451211
7425644 1189442
6335198 4957
Sample Output
35793453939901
14225956593420
4332838845846
15400094813
14225956593420
4332838845846
15400094813
HINT
【数据规模】
T<=10000
#pragma GCC optimize(2)
#pragma G++ optimzie(2)
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<iostream> #define N 10000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m;
int pri[N],tot;
int t[N],last[N],g[N];
bool flag[N]; void init()
{
for (int i=;i<N;i++)
{
if(!flag[i])
{
pri[++tot]=i;
last[i]=t[i]=g[i]=;
}
for(int j=;pri[j]*i<N&&j<=tot;j++)
{
int x=i*pri[j];flag[x]=true;
if(i%pri[j]==)
{
last[x]=last[i];
t[x]=t[i]+;
if(last[x]==)g[x]=;
else g[x]=(t[last[x]]==t[x]?-g[last[x]]:);
break;
}
else
{
last[x]=i;
t[x]=;
g[x]=(t[i]==?-g[i]:);
}
}
}
for (int i=;i<N;i++)g[i]+=g[i-];
/* for (int i=11;i<=20;i++)
cout<<"xzpxzpxzpxzpxzpxzp==laji="<<g[i]<<endl;*/
}
ll solve(int n,int m)
{
if(n>m)swap(n,m);ll res=;
for (int i=,last;i<=n;i=last+)
{
last=min(n/(n/i),m/(m/i));
res+=1ll*(n/i)*(m/i)*(g[last]-g[i-]);
}
return res;
}
int main()
{
init();
int T=read();
while(T--)
{
n=read(),m=read();
printf("%lld\n",solve(n,m));
}
}