使用word2vec训练词向量

使用word2vec无监督学习训练词向量,输入的是训练数据和测试数据,输出的是每个词的词向量,总共三百个词左右。

求和:然后再将每行数据中的每个词的词向量加和,得到每行的词向量表示。

其他还可以通过求平均,求众数或者最大值等等方法得到每行的词向量表示。

代码如下:

import time
import csv
import pickle
import numpy as np
import xgboost as xgb
from sklearn.model_selection import StratifiedKFold
from sklearn.feature_extraction.text import CountVectorizer
from gensim.models.word2vec import Word2Vec
import warnings warnings.filterwarnings('ignore') # 忽略警告
with open("security_train.csv.pkl", "rb") as f:
labels = pickle.load(f)
files = pickle.load(f) with open("security_test.csv.pkl", "rb") as f:
file_names = pickle.load(f)
outfiles = pickle.load(f)

训练词向量模型的方法:

def train_w2v_model(files, size, model, flag):
for batch in range(int(len(files)/size) + 1):
sentences = []
print("batch:", batch)
if batch != int(len(files)/size):
for i in range(batch*size, size*(batch+1)):
sentence = files[i].split(' ')
sentences.append(sentence)
else:
for i in range(size*(batch+1), len(files)):
sentence = files[i].split(' ')
sentences.append(sentence) sentences = np.array(sentences) if batch == 0 and flag == True:
model.build_vocab(sentences)
else:
model.build_vocab(sentences, update=True) model.train(sentences, total_examples = model.corpus_count, epochs = model.epochs) print("done.")
return model
# 训练词向量
model = Word2Vec()
model = train_w2v_model(files, 1000, model, True)
model = train_w2v_model(outfiles, 1000, model, False)
model.save('./temp/w2cmodel_train_test')
# model = Word2Vec.load('./temp/w2cmodel0')
print(model)

对每行数据求词向量之和的方法:

def train_sum_vec(files, model, size=100):
rtvec = []
for i in range(len(files)):
if i % 100 == 0:
print(i)
text = files[i].split(' ')
# 对每个句子的词向量进行求和计算
vec = np.zeros(size).reshape((1, size))
for word in text:
try:
vec += model[word].reshape((1, size))
except KeyError:
continue
rtvec.append(vec) train_vec = np.concatenate(rtvec)
return train_vec

得到训练数据的词向量:

# 将词向量保存为 Ndarray
train_vec = train_sum_vec(files, model)
# 保存 Word2Vec 模型及词向量
model.save('w2v_model.pkl')
np.save('X_train_test_vec.npy', train_vec)
print('done.')

得到测试数据的词向量:

test_vec = train_sum_vec(outfiles, model)
np.save('y_test_vec.npy', test_vec)
print('done.')

xgboost训练:

meta_train = np.zeros(shape=(len(files), 8))
meta_test = np.zeros(shape=(len(outfiles), 8)) k = 10
skf = StratifiedKFold(n_splits=k, random_state=42, shuffle=True)
X_vector = np.load('X_train_test_vec.npy')
y_vector = np.load('y_test_vec.npy')
for i, (tr_ind, te_ind) in enumerate(skf.split(X_vector, labels)):
X_train, X_train_label = X_vector[tr_ind], labels[tr_ind]
X_val, X_val_label = X_vector[te_ind], labels[te_ind] print('FOLD: {}'.format(str(i)))
print(len(tr_ind), len(te_ind)) dtrain = xgb.DMatrix(X_train, label=X_train_label)
dtest = xgb.DMatrix(X_val, X_val_label)
dout = xgb.DMatrix(y_vector) param = {'max_depth': 6, 'eta': 0.1, 'eval_metric': 'mlogloss', 'silent': 1, 'objective': 'multi:softprob',
'num_class': 8, 'subsample': 0.8, 'colsample_bytree': 0.85} evallist = [(dtrain, 'train'), (dtest, 'val')] # 测试 , (dtrain, 'train')
num_round = 300 # 循环次数
bst = xgb.train(param, dtrain, num_round, evallist, early_stopping_rounds=50) # dtr = xgb.DMatrix(train_features)
pred_val = bst.predict(dtest)
pred_test = bst.predict(dout)
meta_train[te_ind] = pred_val
meta_test += pred_test meta_test /= 10.0
with open("word2vec_result_{}.pkl".format(
str(time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()))),
'wb') as f:
pickle.dump(meta_train, f)
pickle.dump(meta_test, f)
result = meta_test
out = [] for i in range(len(file_names)):
tmp = []
a = result[i].tolist()
tmp.append(file_names[i])
tmp.extend(a)
out.append(tmp) with open("word2vec_10k_{}.csv".format(
str(time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()))),
"w",
newline='') as csvfile:
writer = csv.writer(csvfile) # 先写入columns_name
writer.writerow(["file_id", "prob0", "prob1", "prob2", "prob3", "prob4", "prob5", "prob6", "prob7"])
# 写入多行用writerows
writer.writerows(out)

提交到线上得到的结果为,0.725923

使用词向量的平均值,提交到线上结果为,0.751533

数据增强后,结果为,0.711533

05-11 22:22