题目链接

https://atcoder.jp/contests/agc009/tasks/agc009_e

题解

又被劝退了。。。

第一步转化非常显然: 就等价于一开始有一个数\(1\), 有\(\frac{n+m-1}{k-1}\)次机会每次选择一个数把它变成\(k\)个原来的\(\frac{1}{k}\), 最后从\(n+m\)个数中选出\(m\)个,问能选出多少不同的数。

然后考虑化成\(k\)进制小数,假设最后形成的数是\(d_1,d_2,...,d_{n+m}\), 则\(\sum^{n+m}_{i=1} d_i=1\).

一个\(d\)进制小数可以被表示成\(m\)个\(k\)的负整数次幂之和当且仅当其每一位数值之和不超过\(m\)且和\(m\)模\((k-1)\)同余。(显然)

但同时还要保证\(1\)可以被表示成\((n+m)\)个\(k\)的负整数次幂之和,且包含这\(m\)个数。那么就可以转化成\(1\)减这个小数可以被表示成\(n\)个\(k\)的负整数次幂之和。(行吧我就这一步没想出来……自闭了啊……)

所以最后也就是要计算有多少个序列\(a_1,a_2,...,a_l\ (1\le l\le \frac{n+m-1}{k-1})\), 满足\(0\le a_i\le k-1, a_l>0, \sum^l_{i=1}a_i\le m,\sum^l_{i=1}a_i\equiv m(\mod k-1), \sum^l_{i=1}k-1-a_i\le n-1, \sum^l_{i=1}k-1-a_i\equiv n-1(\mod k-1)\), 直接dp即可。时间复杂度\(O((n+m)k)\).

代码

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cassert>
#define llong long long
using namespace std; const int N = 4e3;
const int P = 1e9+7;
llong dp[N+3][N+3],sdp[N+3][N+3];
int n1,n2,m,len;
llong ans; int main()
{
scanf("%d%d%d",&n1,&n2,&m); len = (n1+n2-1)/(m-1);
dp[0][0] = 1ll; for(int j=0; j<=n2; j++) sdp[0][j] = 1;
for(int i=1; i<=len; i++)
{
for(int j=0; j<=n2; j++)
{
if(j>=m) {dp[i][j] = (sdp[i-1][j]-sdp[i-1][j-m]+P)%P;}
else {dp[i][j] = sdp[i-1][j];}
if((n2-j)%(m-1)==0 && i*(m-1)-j<=n1-1 && (n1-1-i*(m-1)+j)%(m-1)==0) {ans = (ans+dp[i][j]-dp[i-1][j]+P)%P;}
}
sdp[i][0] = dp[i][0]; for(int j=1; j<=n2; j++) sdp[i][j] = (sdp[i][j-1]+dp[i][j])%P;
}
printf("%lld\n",ans);
return 0;
}
05-23 15:13