1. EM算法-数学基础
2. EM算法-原理详解
3. EM算法-高斯混合模型GMM
4. EM算法-GMM代码实现
5. EM算法-高斯混合模型+Lasso
1. 前言
前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项。
2. 不带惩罚项的GMM
原始的GMM的密度函数是
\[
p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)
\]
\[
\sum_{k=1}^K\pi_k=1
\]
其中\(K\)是高斯组件的个数,\([\pi_1,\pi_2,...,\pi_k]\)是每个组件的权重。其中的\(\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k\)是组件\(k\)的均值和协方差矩阵。
log极大似然函数的公式是:
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k-\frac{1}{2}(log(\boldsymbol{\Sigma_k})+\frac{{(x_i-\boldsymbol{\mu}_k})^2}{\boldsymbol{\Sigma}_k})]\;\;\;\;\;(1)
\]
这里有一个响应度的变量\(\gamma_{ik}\),响应度\(\gamma_{ik}\)代表了第\(i\)个样本,在第\(k\)个组件上的响应程度。响应度的计算公式也很简单。
\[
\gamma_{ik}=\frac{\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}
\]
通过\(L(\theta, \theta^{j})\)对\(\mu_k\),\(\Sigma_k\)求偏倒等于0得到
\[
\mu_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i\;\;\;\;\;(2)
\]
\[
\Sigma_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}(x_i-\mu_k)^2
\]
\[
\pi_k=\frac{n_k}{N}
\]
其中的\(n_k=\sum_{i=1}^N\gamma_{ik}\)。
到这里为止我们不带惩罚项的所有变量都计算出来了,只要一直循环E步M步,就能使得loglikelihood最大化。
3. 带惩罚项的GMM
在带penality的GMM中,我们假设协方差是一个对角矩阵,这样的话,我们计算高斯密度函数的时候,只需要把样本各个维度与对应的\(\mu_k\)和\(\sigma_k\)计算一维高斯分布,再相加即可。不需要通过多维高斯进行计算,也不需要协方差矩阵是半正定的要求。
我们给上面的(1)式加入一个惩罚项,
\[
\lambda\sum_{k=1}^K\sum_{j=1}^P\frac{|\mu_k-\bar{x}_j|}{s_j}
\]
其中的\(P\)是样本的维度。\(\bar{x}_j\)表示每个维度的平均值,\(s_j\)表示每个维度的标准差。这个penality是一个L1范式,对\(\mu_k\)进行约束。
加入penality后(1)变为
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k-\frac{1}{2}(log(\boldsymbol{\Sigma_k})+\frac{{(x_i-\boldsymbol{\mu}_k})^2}{\boldsymbol{\Sigma}_k})] - \lambda\sum_{k=1}^K\sum_{j=1}^P\frac{|\mu_k-\bar{x}_j|}{s_j}
\]
这里需要注意的一点是,因为penality有一个绝对值,所以在对\(\mu_k\)求导的时候,需要分情况。于是(2)变成了
\[
\mu_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i
\]
\[
\mu_k=
\left \{\begin{array}{cc}
\frac{1}{n_k}(\sum_{i=1}^N\gamma_{ik}x_i - \frac{\lambda\sigma^2}{s_j}), & \mu_k >= \bar{x}_j\\
\frac{1}{n_k}(\sum_{i=1}^N\gamma_{ik}x_i + \frac{\lambda\sigma^2}{s_j}), & \mu_k < \bar{x}_j
\end{array}\right.
\]
3.1 注意点
- 在带有penality的GMM中,如果从一开始迭代时,\(\lambda>0\)那这时loglikelihood很容易陷入一个局部最大值。如果前几个迭代我们先令\(\lambda=0\),而后在令\(\lambda>0\),这样能够寻找到一个比较好的最大值点。
- 由于在算EM的时候,很容易出现underflow活着overflow,这是我们可以通过一个近似公式来避开这个问题。
\[
log(\sum_hexp(a_h)) = m + log(\sum_hexp(a_h - m))\;\;\;m=max(a_h)
\] - 初始值很影响EM的聚类的结果,所以我们需要改变seed来多次运行程序,寻找导最好的EM结果。
4. 总结
本文对GMM模型进行了改良,加入了L1的penality项,使得\(\mu_k\)不会偏离\(\bar{x}_j\)太大,导致过拟合。下一篇博客通过代码,详细的展示这个过程。