题目大意:求$n$个点的带标号的无向连通图的个数
题解:令$F(x)$为带标号无向连通图个数生成函数,$G(x)$为带标号无向图个数生成函数
那么$G(x) = \sum_{i=0}^{\infty} \dfrac{2^{i(i-1)/2}}{i!} x^i$
枚举连通块个数可得$G(x)=\sum_{i=0}^{\infty}\dfrac{F^i(x)}{i!}$
$$
f(x)=f(x_0)+\dfrac{f'(x_0)(x-x_0)}{1!}+\dfrac{f''(x_0)(x-x_0)^2}{2!}+\cdots+\dfrac{f^{(n)}(x_0)(x-x_0)^n}{n!}\\
f(x)=e^x, x_0=0\\
e^x=\sum\limits_{i=0}^{\infty}\dfrac{x^i}{i!}
$$
由泰勒展开得$G(x)=e^{F(x)}$
所以$F(x) = \ln G(x)$
$$
F(x)=\ln G(x)\\
F'(x)=\dfrac{G'(x)}{G(x)}\\
F(x)=\int\dfrac{G'(x)}{G(x)}\mathrm{dx}
$$
答案是$[x^n]F(x) \times n!$
卡点:无
C++ Code:
#include <cstdio>
#include <algorithm>
#define maxn 262144 + 10
const int mod = 1004535809, G = 3;
int n;
int g[maxn], f[maxn], fac[maxn], inv[maxn];
inline int pw(int base, long long p) {
p %= mod - 1, base %= mod;
int res = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) res = 1ll * res * base % mod;
return res;
}
inline int INV(int x) {
return pw(x, mod - 2);
}
namespace Polynomial {
int lim, ilim, s, rev[maxn];
int C[maxn], Wn[maxn];
inline void init(int n) {
s = -1, lim = 1; while (lim < n) lim <<= 1, s++;
ilim = ::INV(lim);
for (int i = 1; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << s);
int tmp = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * tmp % mod;
}
inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += (mid << 1)) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[t * j] : Wn[lim - t * j];
int X = A[i + j], Y = 1ll * W * A[i + j + mid] % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
void INV(int *A, int *B, int n) {
if (n == 1) {B[0] = ::INV(A[0]); return ;}
INV(A, B, n + 1 >> 1), init(n << 1);
for (int i = 0; i < n; i++) C[i] = A[i];
for (int i = n; i < lim; i++) C[i] = B[i] = 0;
NTT(B, 1), NTT(C, 1);
for (int i = 0; i < lim; i++) B[i] = (2 + mod - 1ll * B[i] * C[i] % mod) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
inline void DER(int *A, int *B, int n) {
B[n] = 0; for (int i = 1; i < n; i++) B[i - 1] = 1ll * A[i] * i % mod;
}
inline void INT(int *A, int *B, int n) {
B[0] = 0; for (int i = 1; i < n; i++) B[i] = 1ll * A[i - 1] * ::INV(i) % mod;
} int D[maxn];
inline void LN(int *A, int *B, int len) {
DER(A, B, len);
INV(A, D, len);
init(n << 1);
NTT(B, 1), NTT(D, 1);
for (int i = 0; i < lim; i++) D[i] = 1ll * B[i] * D[i] % mod;
NTT(D, 0);
INT(D, B, len);
for (int i = len; i < lim; i++) B[i] = 0;
}
}
int main() {
scanf("%d", &n); n++;
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for (int i = 2; i < n; i++) {
fac[i] = 1ll * fac[i - 1] * i % mod;
inv[i] = 1ll * inv[mod % i] * (mod - mod / i) % mod;
}
for (int i = 2; i < n; i++) inv[i] = 1ll * inv[i - 1] * inv[i] % mod;
for (int i = 0; i < n; i++) g[i] = 1ll * pw(2, 1ll * i * (i - 1) >> 1ll) * inv[i] % mod;
Polynomial::LN(g, f, n);
printf("%lld\n", 1ll * f[n - 1] * fac[n - 1] % mod);
return 0;
}