题目:

Sort a linked list in O(n log n) time using constant space complexity.

题解:

考虑到要求用O(nlogn)的时间复杂度和constant space complexity来sort list,自然而然想到了merge sort方法。同时我们还已经做过了merge k sorted list和merge 2 sorted list。这样这个问题就比较容易了。

不过这道题要找linkedlist中点,那当然就要用最经典的faster和slower方法,faster速度是slower的两倍,当faster到链尾时,slower就是中点,slower的next是下一半的开始点。

解决了这些问题,题目就很容易解出了。

代码如下:

 1     public ListNode sortList(ListNode head) {
 2         if(head == null|| head.next == null)
 3             return head;
 4         ListNode slow = head, fast = head, firsthalf = head;
 5         while(fast.next!=null&&fast.next.next!=null){
 6             slow = slow.next;
 7             fast = fast.next.next;
 8         }
 9         ListNode secondhalf = slow.next;
         slow.next = null;
         
         ListNode leftlist = null, rightlist =null;
         if(firsthalf!=secondhalf){
             leftlist = sortList(firsthalf);
             rightlist = sortList(secondhalf);
         }
         return mergeTwoLists(leftlist, rightlist);
     }
     
     public ListNode mergeTwoLists(ListNode leftlist, ListNode rightlist){
         if(rightlist == null)
             return leftlist;
         if(leftlist == null)
             return rightlist;
         
         ListNode fakehead = new ListNode(-1);
         ListNode ptr = fakehead;
         while(rightlist!=null&&leftlist!=null){
             if(rightlist.val<leftlist.val){
                 ptr.next = rightlist;
                 ptr = ptr.next;
                 rightlist = rightlist.next;
             }else{
                 ptr.next = leftlist;
                 ptr = ptr.next;
                 leftlist = leftlist.next;
             }
         }
         
         if(rightlist!=null)
             ptr.next = rightlist;
         if(leftlist!=null)
             ptr.next = leftlist;
         
         return fakehead.next;
     }
05-13 07:03