题目描述

\(Ray\) 乐忠于旅游,这次他来到了\(T\) 城。\(T\) 城是一个水上城市,一共有 \(N\) 个景点,有些景点之间会用一座桥连接。为了方便游客到达每个景点但又为了节约成本,\(T\) 城的任意两个景点之间有且只有一条路径。换句话说, \(T\) 城中只有\(N − 1\) 座桥。

\(Ray\) 发现,有些桥上可以看到美丽的景色,让人心情愉悦,但有些桥狭窄泥泞,令人烦躁。于是,他给每座桥定义一个愉悦度\(w\),也就是说,\(Ray\) 经过这座桥会增加\(w\) 的愉悦度,这或许是正的也可能是负的。有时,\(Ray\) 看待同一座桥的心情也会发生改变。

现在,\(Ray\) 想让你帮他计算从\(u\) 景点到\(v\) 景点能获得的总愉悦度。有时,他还想知道某段路上最美丽的桥所提供的最大愉悦度,或是某段路上最糟糕的一座桥提供的最低愉悦度。

输入输出格式

输入格式:

输入的第一行包含一个整数\(N\),表示\(T\) 城中的景点个数。景点编号为 \(0...N − 1\)。

接下来\(N − 1\) 行,每行三个整数\(u\)、\(v\) 和\(w\),表示有一条u 到\(v\),使 \(Ray\) 愉悦度增加\(w\) 的桥。桥的编号为\(1...N − 1\)。\(|w| \leq 1000\)。 输入的第\(N + 1\) 行包含一个整数\(M\),表示\(Ray\) 的操作数目。

接下来有\(M\) 行,每行描述了一个操作,操作有如下五种形式:

\(C\) \(i\) \(w\),表示\(Ray\) 对于经过第\(i\) 座桥的愉悦度变成了\(w\)。

\(N\) \(u\) \(v\),表示\(Ray\) 对于经过景点\(u\) 到\(v\) 的路径上的每一座桥的愉悦度都变成原来的相反数。

\(SUM\) \(u\) \(v\),表示询问从景点\(u\) 到\(v\) 所获得的总愉悦度。

\(MAX\) \(u\) \(v\),表示询问从景点\(u\) 到\(v\) 的路径上的所有桥中某一座桥所提供的最大愉悦度。

\(MIN\) \(u\) \(v\),表示询问从景点\(u\) 到\(v\) 的路径上的所有桥中某一座桥所提供的最小愉悦度。

测试数据保证,任意时刻,\(Ray\) 对于经过每一座桥的愉悦度的绝对值小于等于\(1000\)。

输出格式:

对于每一个询问(操作\(S\)、\(MAX\) 和\(MIN\)),输出答案。

输入输出样例

输入样例#1:

3
0 1 1
1 2 2
8
SUM 0 2
MAX 0 2
N 0 1
SUM 0 2
MIN 0 2
C 1 3
SUM 0 2
MAX 0 2

输出样例#1:

3
2
1
-1
5
3

说明

很容易的基础题哦>.<

思路:如果说这道题是点权的话,那么就是一道树链剖分的板子题,但是,这道题是边权,那怎么办呢?可以发现,每个儿子只有一个父亲,那么我们就可以用这个儿子的点权来代替它与它父亲之间的边权,然后用树链剖分+线段树维护最大值,最小值和区间和即可。

代码:

#include<cstdio>
#include<algorithm>
#include<cctype>
#define maxn 200007
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
const int inf=0x7fffffff;
int n,m,num,head[maxn],a[maxn],size[maxn],d[maxn],top[maxn];
int cnt,sum[maxn<<2],lazy[maxn<<2],maxx[maxn<<2],minn[maxn<<2];
int fa[maxn],id[maxn],zrj[maxn],son[maxn];
char s1[8];
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int v,w,nxt;
}e[maxn<<1];
inline void ct(int u, int v, int w) {
e[++num].v=v;
e[num].w=w;
e[num].nxt=head[u];
head[u]=num;
}
void dfs1(int u) {
size[u]=1;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa[u]) {
d[v]=d[u]+1;
fa[v]=u;
zrj[v]=e[i].w;
dfs1(v);
size[u]+=size[v];
if(size[v]>size[son[u]]) son[u]=v;
}
}
}
void dfs2(int u, int t) {
id[u]=++cnt;
top[u]=t;
a[cnt]=zrj[u];
if(son[u]) dfs2(son[u],t);
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
inline void pushup(int rt) {
sum[rt]=sum[ls]+sum[rs];
maxx[rt]=max(maxx[ls],maxx[rs]);
minn[rt]=min(minn[ls],minn[rs]);
}
inline void pushdown(int rt) {
if(lazy[rt]) {
sum[ls]=-sum[ls],lazy[ls]^=1;
sum[rs]=-sum[rs],lazy[rs]^=1;
int t1=maxx[ls],t2=maxx[rs],s1=minn[ls],s2=minn[rs];
maxx[ls]=-s1,maxx[rs]=-s2,minn[ls]=-t1,minn[rs]=-t2;
lazy[rt]=0;
}
}
void build(int rt, int l, int r) {
if(l==r) {
sum[rt]=maxx[rt]=minn[rt]=a[l];
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(rt);
}
void add(int rt, int l, int r, int L, int val) {
if(l==r) {
sum[rt]=maxx[rt]=minn[rt]=val;
return;
}
pushdown(rt);
int mid=(l+r)>>1;
if(L<=mid) add(ls,l,mid,L,val);
else add(rs,mid+1,r,L,val);
pushup(rt);
}
void modify(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return;
if(L<=l&&r<=R) {
sum[rt]=-sum[rt],lazy[rt]^=1;
int t=maxx[rt],s=minn[rt];
maxx[rt]=-s,minn[rt]=-t;
return;
}
int mid=(l+r)>>1;
pushdown(rt);
modify(ls,l,mid,L,R),modify(rs,mid+1,r,L,R);
pushup(rt);
}
int csum(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return 0;
if(L<=l&&r<=R) return sum[rt];
int mid=(l+r)>>1;
pushdown(rt);
return csum(ls,l,mid,L,R)+csum(rs,mid+1,r,L,R);
}
int cmax(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return -inf;
if(L<=l&&r<=R) return maxx[rt];
int mid=(l+r)>>1,ans=-inf;
pushdown(rt);
if(L<=mid) ans=max(ans,cmax(ls,l,mid,L,R));
if(R>mid) ans=max(ans,cmax(rs,mid+1,r,L,R));
return ans;
}
int cmin(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return inf;
if(L<=l&&r<=R) return minn[rt];
int mid=(l+r)>>1,ans=inf;
pushdown(rt);
if(L<=mid) ans=min(ans,cmin(ls,l,mid,L,R));
if(R>mid) ans=min(ans,cmin(rs,mid+1,r,L,R));
return ans;
}
void cal(int x, int y) {
int fx=top[x],fy=top[y];
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
modify(1,1,cnt,id[fx],id[x]);
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
modify(1,1,cnt,id[x]+1,id[y]);
}
int query_max(int x, int y) {
int fx=top[x],fy=top[y],ans=-inf;
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
ans=max(ans,cmax(1,1,cnt,id[fx],id[x]));
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
ans=max(ans,cmax(1,1,cnt,id[x]+1,id[y]));
return ans;
}
int query_min(int x, int y) {
int fx=top[x],fy=top[y],ans=inf;
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
ans=min(ans,cmin(1,1,cnt,id[fx],id[x]));
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
ans=min(ans,cmin(1,1,cnt,id[x]+1,id[y]));
return ans;
}
int query_sum(int x, int y) {
int fx=top[x],fy=top[y],ans=0;
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
ans+=csum(1,1,cnt,id[fx],id[x]);
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
ans+=csum(1,1,cnt,id[x]+1,id[y]);
return ans;
}
int main() {
n=qread();
for(int i=1,u,v,w;i<n;++i) {
u=qread()+1,v=qread()+1,w=qread();
ct(u,v,w);ct(v,u,w);
}
dfs1(1);dfs2(1,1);build(1,1,n);
m=qread();
for(int i=1,x,y;i<=m;++i) {
scanf("%s",s1);x=qread()+1,y=qread()+1;
if(s1[0]=='C') add(1,1,n,id[x],y-1);
if(s1[0]=='N') cal(x,y);
if(s1[0]=='S') printf("%d\n",query_sum(x,y));
if(s1[1]=='I') printf("%d\n",query_min(x,y));
if(s1[1]=='A') printf("%d\n",query_max(x,y));
}
return 0;
}
05-26 06:13