Spark(二)算子讲解

@

一、wordcountcount

基于上次的wordcount,我们来写一个wordcountcount,来对wc程序进行第二次计数,我们来分析一下性能。

package com.littlepage.wc

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object WordCount {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("wc").setMaster("local")
val sparkContext=new SparkContext(conf)
sparkContext.setLogLevel("error")
val fileRDD:RDD[String] = sparkContext.textFile("data/data")
val words:RDD[String] = fileRDD.flatMap(_.split(" "))
val pairWord:RDD[(String,Int)] = words.map((_,1))
val res:RDD[(String,Int)] = pairWord.reduceByKey(_+_)
println("wordcount:")
res.foreach(println)
val rev:RDD[(Int,Int)] = res.map((x)=>{(x._2,1)})
val pl:RDD[(Int,Int)] = rev.reduceByKey(_+_)
println("\nwordcountcount")
pl.foreach(println)
Thread.sleep(100000000)
}
}

通过性能图,我们可以知道:

1.Spark如果不对其结果进行存储或输出,那么Spark将不会处理map或者reduce操作

2.如果进行重复输出,共用的map或者reduce操作只执行一次

3.默认如果产生一次shuffle是去查看图表的一次拐弯,为了尽量减少性能的消耗,编写程序时应该尽量减少shuffle的次数

二、编程模型

Spark编程模型和MapReduce相比,Spark可以多个Job,多个State进行执行。

源码部分参考视频

三、RDD数据集和算子的使用

1.三个必备算子

我们在写一个Spark程序中,不可避免的算子有三个,创建算子,转换算子,收集算子。

创建算子可以创建一个RDD数据集,这个创建可以在内存中(集合容器),也可以在硬盘中(文件)获取

转换算子可以处理一个RDD数据集,即map和reduce操作,都算做转换算子。

收集算子我们在写一个RDD数据集的时候,必须使用收集算子进行收集,否则不会触发shuffle。

示例,三个算子写一个过滤数字程序。

package com.littlepage

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object demo2 {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("demo2").setMaster("local")
val sc=new SparkContext(conf)
sc.setLogLevel("error")
val dataRDD: RDD[Int] = sc.parallelize(List(1,2,3,4,5,6,7,6,5,4,3,2,1))//创建算子
val filterRDD: RDD[Int] = dataRDD.filter(_>3)//转换算子
val ints:Array[Int] = filterRDD.collect()//收集算子
Thread.sleep(100000)
}
}
package com.littlepage

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object demo2 {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("demo2").setMaster("local")
val sc=new SparkContext(conf)
sc.setLogLevel("error")
val dataRDD: RDD[Int] = sc.parallelize(List(1,2,3,4,5,6,7,6,5,4,3,2,1))//创建算子
val filterRDD: RDD[Int] = dataRDD.filter(_>3)//转换算子
val ints:Array[Int] = filterRDD.collect()//收集算子
Thread.sleep(100000)
}
}
2.常见算子(交并差笛卡尔,cogroup,join)

2.1.union算子

将两个数据集合并为一个数据集,直接合并,不会产生shuffle

object union {
def main(args: Array[String]): Unit = {
val sc=new SparkContext(new SparkConf().setMaster("local").setAppName("union"))
sc.setLogLevel("error")
val rdd1:RDD[Int] = sc.parallelize(List(1,2,3,4,6,7))
val rdd2:RDD[Int] = sc.parallelize(List(2,3,4,5))
val uniondata = rdd1.union(rdd2)
uniondata.foreach(print)
Thread.sleep(100000)
}
}

2.2.intersection算子

将2个数据集取交集,产生一个shuffle

val interdata:RDD[Int] = rdd1.intersection(rdd2)

2.3.substract算子

将2个数据集取差集,产生一个shuffle

val subdata:RDD[Int] = rdd1.substract(rdd2)

2.4.cartesian算子

将2个数据集取笛卡尔积,不产生shuffle

val cartesiandata:RDD[Int] = rdd1.cartesian(rdd2)

2.5.cogroup算子

两个分组进行,key作为结果的key,value集合进行一个二元祖,包含两个分区的元素,产生一个shuffle。

val rdd1:RDD[(String,Int)] = sc.parallelize(List(
("zhangsan",11),
("zhangsan",12),
("lisi",13),
("wangwu",14)
));
val rdd2:RDD[(String,Int)] = sc.parallelize(List(
("zhangsan",21),
("zhangsan",22),
("lisi",23),
("zhaoliu",28)
))
val cogroupdata:RDD[(String,(Iterable[Int],Iterable[Int]))] = rdd1.cogroup(rdd2)

6.join,leftOuterJoin,rightOuterJoin,fullOuterJoin算子

val joindata:RDD[(String,(Int,Int))] = rdd1.join(rdd2)
val leftdata:RDD[(String,(Int,Option[Int]))] = rdd1.leftOuterJoin(rdd2)
val rightdata:RDD[(String,(Option[Int],Int))] = rdd2.rightOuterJoin(rdd2)
val fulldata:RDD[(String,(Option[Int],Option[Int]))] = rdd1.fullOuterJoin(rdd2)
3.排序和聚合计算

3.1.swap算子

将一个k-v数据集的key和value交换,用法

data.map(_.swap)

3.2.sort算子

sort算子可以将按照key进行全排序

data.sortByKey()

3.3.take算子

获得数据的前n个,n为一个整型

data.take(n)

3.4.distinct去重

去除key相同的

val keys:RDD[(String,String) = map.distinct()
05-13 23:27