什么是直方图均衡化?

直方图均衡化是一种简单有效的图像增强技术,通过改变图像的直方图来改变图像中各像素的灰度,主要用于增强动态范围偏小的图像的对比度。原始图像由于其灰度分布可能集中在较窄的区间,造成图像不够清晰。例如,过曝光图像的灰度级集中在高亮度范围内,而曝光不足将使图像灰度级集中在低亮度范围内。采用直方图均衡化,可以把原始图像的直方图变换为均匀分布(均衡)的形式,这样就增加了像素之间灰度值差别的动态范围,从而达到增强图像整体对比度的效果。换言之,直方图均衡化的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并,从而增大对比度,使图像清晰,达到增强的目的。举个例子,如图中所示,左图为原始图像,右图为直方图均衡化后的图像。

个人的理解是,直方图可以提高图像的对比度,对于原本对比度较低的图像效果比较明显。

实现直方图均衡化(java+opencv)-LMLPHP

直方图的概念

对一幅灰度图像,其直方图反映了该图像中不同灰度级出现的统计情况。图2给出了一个直方图的示例,其中图(a)是一幅图像,其灰度直方图可表示为图(b),其中横轴表示图像的各灰度级,纵轴表示图像中各灰度级像素的个数。(需要注意,灰度直方图表示了在图像中各个单独灰度级的分布,而图像对比度则取决于相邻近像素之间灰度级的关系。)

实现直方图均衡化(java+opencv)-LMLPHP

严格地说,图像的灰度直方图是一个一维的离散函数,可写成:

实现直方图均衡化(java+opencv)-LMLPHP                 实现直方图均衡化(java+opencv)-LMLPHP(公式1)

式中,是图像中灰度级为的像素的个数。直方图的每一列(称为bin)的高度对应。直方图提供了原图中各种灰度值分布的情况,也可以说直方图给出了一幅图像所有灰度值的整体描述。直方图的均值和方差也是图像灰度的均值和方差。图像的视觉效果与其直方图有对应关系,或者说,直方图的形状和改变对图像有很大的影响。

在直方图的基础上,进一步定义归一化的直方图为灰度级出现的相对频率实现直方图均衡化(java+opencv)-LMLPHP。即:

实现直方图均衡化(java+opencv)-LMLPHP      (公式2)

式中,表示图像的像素的总数,是图像中灰度级为的像素的个数。

直方图均衡化的步骤

实现直方图均衡化(java+opencv)-LMLPHP

使用java实现直方图均衡化

import java.util.LinkedList;
import java.util.List; import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class huiduhua { //静态代码块加载动态链接库
static {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
} public static void main(String[] args) { /*
* IMREAD_UNCHANGED = -1 :不进行转化,比如保存为了16位的图片,读取出来仍然为16位。
* IMREAD_GRAYSCALE = 0 :进行转化为灰度图,比如保存为了16位的图片,读取出来为8位,类型为CV_8UC1。
* IMREAD_COLOR = 1 :进行转化为三通道图像。
* IMREAD_ANYDEPTH = 2 :如果图像深度为16位则读出为16位,32位则读出为32位,其余的转化为8位。
* IMREAD_ANYCOLOR = 4 :图像以任何可能的颜色格式读取
* IMREAD_LOAD_GDAL = 8 :使用GDAL驱动读取文件,GDAL(Geospatial Data Abstraction
* Library)是一个在X/MIT许可协议下的开源栅格空间数据转换库。它利用抽象数据模型来表达所支持的各种文件格式。
* 它还有一系列命令行工具来进行数据转换和处理。
*/ Mat src = Imgcodecs.imread("./data/huiduhua.png",0);
//Imgproc.resize(src, src, new Size(src.cols()/2,src.rows()/2)); HighGui.imshow("原图", src);
HighGui.waitKey(); ImgCalcHist(src,"原图直方图"); Mat dst = new Mat();
//直方图均衡化,该算法对亮度进行归一化并增加图像的对比度。
Imgproc.equalizeHist(src,dst);
HighGui.imshow("直方图均衡化", dst);
HighGui.waitKey(); ImgCalcHist(dst,"直方图均衡化后的直方图"); } /**
* 直方图
* @param src
* @param windowName
*/
public static void ImgCalcHist(Mat src,String windowName) { List<Mat> matList = new LinkedList<Mat>();
matList.add(src); Mat histogram = new Mat(); MatOfFloat ranges=new MatOfFloat(0,256);
MatOfInt histSize = new MatOfInt(300); /*
* 计算直方图
* List<Mat> images:输入图像
* MatOfInt channels:需要统计直方图的第几通道
* Mat mask:掩膜,,计算掩膜内的直方图
* Mat hist:输出的直方图数组
* MatOfInt histSize:指的是直方图分成多少个区间,就是bin的个数
* MatOfFloat ranges: 统计像素值得区间
*/
Imgproc.calcHist(matList,new MatOfInt(0),new Mat(),histogram,histSize ,ranges);
//创建直方图面板
Mat histImage = Mat.zeros( 150, (int)histSize.get(0, 0)[0], CvType.CV_8UC1);
//归一化直方图 详见https://blog.csdn.net/ren365880/article/details/103923813
Core.normalize(histogram, histogram, 1, histImage.rows() , Core.NORM_MINMAX, -1, new Mat() );
//绘制直线 详见:https://blog.csdn.net/ren365880/article/details/103952856
for( int i = 0; i < (int)histSize.get(0, 0)[0]; i++ ){
Imgproc.line(histImage,new org.opencv.core.Point(i, histImage.rows()),new org.opencv.core.Point(i, histImage.rows()-Math.round( histogram.get(i,0)[0])) ,new Scalar( 255, 255, 255),1, 8, 0 );
}
HighGui.imshow(windowName, histImage);
HighGui.waitKey();
} }

效果:

实现直方图均衡化(java+opencv)-LMLPHP

实现直方图均衡化(java+opencv)-LMLPHP

参考资料:https://blog.csdn.net/qq_15971883/article/details/88699218

https://blog.csdn.net/zaibeijixing/article/details/96336864

05-17 12:05