1 前言
Andrew Ng的UFLDL在2014年9月底更新了。
对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息!
新的Tutorial相比旧的Tutorial添加了Convolutional Neural Network的内容。了解的童鞋都知道CNN在Computer Vision的重大影响。
而且从新编排了内容及exercises。
新的UFLDL网址为:
http://ufldl.stanford.edu/tutorial/
2 Linear Regression 理论简述
对于线性回归Linear Regression,恐怕大部分童鞋都了解。简单的说
线性回归问题就是一个目标值y取决于一组输入值x。我们要寻找一个最合适的如果Hypothesis来描写叙述这个y与x的关系。然后利用这个Hypothesis来预測新的输入x相应的y。
这是个简单的最优化问题。我们须要一个代价函数cost function来描写叙述在training set样本中的y与通过h函数预測的y之间的差距,从而利用这个cost function通过Gradient Decent梯度下降法来计算h的最优參数从而得到最优的h。
由于是通过样本让计算机“学习”合适的參数theta,因此这是一个最主要的机器学习算法。
cost function:
J(θ)=12∑i(hθ(x(i))−y(i))2=12∑i(θ⊤x(i)−y(i))2
对theta做偏导:
Differentiating the cost function J(θ) as given above with respect to a particular parameter θj gives us:
∂J(θ)∂θj=∑ix(i)j(hθ(x(i))−y(i))
3 Linear Regression 练习
3.1 ex1a_linreg.m 分析
%
%This exercise uses a data from the UCI repository:
% Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
% http://archive.ics.uci.edu/ml
% Irvine, CA: University of California, School of Information and Computer Science.
%
%Data created by:
% Harrison, D. and Rubinfeld, D.L.
% ''Hedonic prices and the demand for clean air''
% J. Environ. Economics & Management, vol.5, 81-102, 1978.
%
addpath ../common
addpath ../common/minFunc_2012/minFunc
addpath ../common/minFunc_2012/minFunc/compiled % Load housing data from file.
data = load('housing.data'); % housing data 506x14
data=data'; % put examples in columns 14x506 一般这里将每一个样本放在每一列 % Include a row of 1s as an additional intercept feature.
data = [ ones(1,size(data,2)); data ]; % 15x506 添加intercept term % Shuffle examples. 乱序 目的在于之后可以随机选取training set和test sets
data = data(:, randperm(size(data,2))); %randperm(n)用于随机生成1到n的排列 % Split into train and test sets
% The last row of 'data' is the median home price.
train.X = data(1:end-1,1:400); %选择前400个样本来训练,后面的样本来做測试
train.y = data(end,1:400); test.X = data(1:end-1,401:end);
test.y = data(end,401:end); m=size(train.X,2); %训练样本数量
n=size(train.X,1); %每一个样本的变量个数 % Initialize the coefficient vector theta to random values.
theta = rand(n,1); %随机生成初始theta 每一个值在(0,1)之间 % Run the minFunc optimizer with linear_regression.m as the objective.
%
% TODO: Implement the linear regression objective and gradient computations
% in linear_regression.m
%
tic; %Start a stopwatch timer. 開始计时
options = struct('MaxIter', 200);
theta = minFunc(@linear_regression, theta, options, train.X, train.y);
fprintf('Optimization took %f seconds.\n', toc); %toc Read the stopwatch timer % Run minFunc with linear_regression_vec.m as the objective.
%
% TODO: Implement linear regression in linear_regression_vec.m
% using MATLAB's vectorization features to speed up your code.
% Compare the running time for your linear_regression.m and
% linear_regression_vec.m implementations.
%
% Uncomment the lines below to run your vectorized code.
%Re-initialize parameters
%theta = rand(n,1);
%tic;
%theta = minFunc(@linear_regression_vec, theta, options, train.X, train.y);
%fprintf('Optimization took %f seconds.\n', toc); % Plot predicted prices and actual prices from training set.
actual_prices = train.y;
predicted_prices = theta'*train.X; % Print out root-mean-squared (RMS) training error.平方根误差
train_rms=sqrt(mean((predicted_prices - actual_prices).^2));
fprintf('RMS training error: %f\n', train_rms); % Print out test RMS error
actual_prices = test.y;
predicted_prices = theta'*test.X;
test_rms=sqrt(mean((predicted_prices - actual_prices).^2));
fprintf('RMS testing error: %f\n', test_rms); % Plot predictions on test data.
plot_prices=true;
if (plot_prices)
[actual_prices,I] = sort(actual_prices); %从小到大排序价格。I为index
predicted_prices=predicted_prices(I);
plot(actual_prices, 'rx');
hold on;
plot(predicted_prices,'bx');
legend('Actual Price', 'Predicted Price');
xlabel('House #');
ylabel('House price ($1000s)');
end
3.2 linear_regression.m code
function [f,g] = linear_regression(theta, X,y)
%
% Arguments:
% theta - A vector containing the parameter values to optimize.
% X - The examples stored in a matrix.
% X(i,j) is the i'th coordinate of the j'th example.
% y - The target value for each example. y(j) is the target for example j.
% m=size(X,2);
n=size(X,1); f=0;
g=zeros(size(theta)); %
% TODO: Compute the linear regression objective by looping over the examples in X.
% Store the objective function value in 'f'.
%
% TODO: Compute the gradient of the objective with respect to theta by looping over
% the examples in X and adding up the gradient for each example. Store the
% computed gradient in 'g'. %%% YOUR CODE HERE %%% % Step 1 : Compute f cost function
for i = 1:m
f = f + (theta' * X(:,i) - y(i))^2;
end f = 1/2*f; % Step 2: Compute gradient for j = 1:n
for i = 1:m
g(j) = g(j) + X(j,i)*(theta' * X(:,i) - y(i));
end end
3.3 Result
Optimization took 3.374166 seconds.
RMS training error: 4.679871
RMS testing error: 4.865463
RMS training error: 4.679871
RMS testing error: 4.865463
【本文为原创文章,转载请注明出处:blog.csdn.net/songrotek】