最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下:
Free Online Books
- by Yoshua Bengio, Ian Goodfellow and Aaron Courville
- Neural Networks and Deep Learning42 by Michael Nielsen
- Deep Learning27 by Microsoft Research
- Deep Learning Tutorial23 by LISA lab, University of Montreal
- Deep Learning:An MIT Press Book
Courses
- Machine Learning10 by Andrew Ng in Coursera
- Neural Networks for Machine Learning12 by Geoffrey Hinton in Coursera
- Neural networks class2 by Hugo Larochelle from Université de Sherbrooke
- Deep Learning Course14 by CILVR lab @ NYU
Video and Lectures
- How To Create A Mind3 By Ray Kurzweil - Is a inspiring talk
- Deep Learning, Self-Taught Learning and Unsupervised Feature Learning2 By Andrew Ng
- Recent Developments in Deep Learning2 By Geoff Hinton
- The Unreasonable Effectiveness of Deep Learning by Yann LeCun
- Deep Learning of Representations by Yoshua bengio
- Principles of Hierarchical Temporal Memory by Jeff Hawkins
- Machine Learning Discussion Group - Deep Learning w/ Stanford AI Lab1 by Adam Coates
- Making Sense of the World with Deep Learning1 By Adam Coates
- Demystifying Unsupervised Feature LearningBy Adam Coates
- Visual Perception with Deep Learning3 By Yann LeCun
- Oxford Deep Learning -Nando de Freitas:在Oxford开设的深度学习课程,有全套视频
Papers
- ImageNet Classification with Deep Convolutional Neural Networks5
- Using Very Deep Autoencoders for Content Based Image Retrieval2
- Learning Deep Architectures for AI2
- CMU’s list of papers7
- The Learning Machines - 一个导论性质的文章,让你大致了解深度学习是什么,用来干什么的。
- Deep Learning - (Review Article in Nature, May 2015) 三大神 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton的文章,不解释。
- Growing Pains in Deep Learning
- Deep Learning in Neural Networks - This technical report provides an overview of deep learning and related techniques with a special focus on developments in recent years. 主要看点是深度学习近两年(2012-2014)的进展情况。
Tutorials
- UFLDL Tutorial 120
- Deep Learning Tutorial from Stanford:斯坦福的官方Tutorial
- Deep Learning for NLP (without Magic)8
- A Deep Learning Tutorial: From Perceptrons to Deep Networks5
WebSites
Datasets
- MNIST1 Handwritten digits
- Google House Numbers from street view
- CIFAR-10 and CIFAR-10034. IMAGENET1
- Tiny Images1 80 Million tiny images6. Flickr Data 100 Million Yahoo dataset
- Berkeley Segmentation Dataset 500
Frameworks
- Caffe92. Torch73
- Theano3
- cuda-convnet25. Ccv1
- NuPIC3
- DeepLearning4J:Java和Scala写的,能在Hadoop和Spark上应用,功能非常强大
Miscellaneous
- Google Plus - Deep Learning Community
- Caffe Webinar4
- 100 Best Github Resources in Github for DL5
- Word2Vec3
- Caffe DockerFile2
- TorontoDeepLEarning convnet
- Vision data sets1
- Fantastic Torch Tutorial4 My personal favourite. Also check out gfx.js1
Github
- DeepLearn Toolbox
- Caffe Webinar4
- 100 Best Github Resources in Github for DL5
- Word2Vec3
- GitHub - Eniac-Xie/PyConvNet: Convolutional Neural Network for python users :一个简单的CNN实现(Python)
几个常见应用领域
- Video Recognition - finding and/or identifying specific items in videos or images
- Self-Driving Cars - just like it says, cars that drive without humans
- Natural Language Processing - getting computers to understand human vocal languages
- And others - A free book chapter on many applications of deep learning
几个常用的深度学习代码库
H2O - 一个开源的可扩展的库,支持Java, Python, Scala, and R
Deeplearning4j - Java库,整合了Hadoop和Spark
Caffe - Yangqing Jia读研究生的时候开发的,现在还是由Berkeley维护。
Theano - 最流行的Python库
News
- Deep Learning News - 紧跟深度学习的新闻、研究进展和相关的创业项目。
CV和NLP方面的应用(左边的链接是论文,右边的是代码)
- Page on Toronto, Home Page of Geoffrey Hinton
- Page on Toronto, Home Page of Ruslan R Salakhutdinov
- Page on Wustl, ynd/cae.py · GitHub
- Page on Icml, https://github.com/lisa-lab/pyle...
- Page on Jmlr, pylearn2)
- On the difficulty of training recurrent neural networks, trainingRNNs
- ImageNet Classification with Deep Convolutional Neural Networks, cuda-convnet - High-performance C++/CUDA implementation of convolutional neural networks - Google Project Hosting
- Linguistic Regularities in Continuous Space Word Representations, word2vec - Tool for computing continuous distributed representations of words. - Google Project Hosting
最后一定得推荐这个Github:
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)(篇目一是机器学习的资料汇总,篇目二是深度学习的汇总,并且在不断更新中)
参考文献:
1.深度学习阅读清单:http://suanfazu.com/t/topic/245
2.深度学习如何入门:https://www.zhihu.com/question/26006703/answer/63572833