昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^)

  推荐几本好书:

1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's )

2.Elements of Statistical Learning(by Bishop's)

  这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本。如果看英文觉得吃力,推荐看一下下面几本英文书。

3.机器学习实战

4.集体智慧编程

5.统计学习方法

6.机器学习

Ps:我个人的学习方法就是看书,因为我觉得看书比较快,视频太慢了,有些不懂的地方会找一些MOOC视频来理解,这样效率比较高。入门的话看以上推荐的几本书还是很好入门的,中英文均可,把一本书吃透比所有都看过但所有都不记得要好。

  以下是搜集的其他资料,我看过的会有一些小说明:

Summary:

Online courses:

1.Andrew Ng's Machine Learning at Coursera

  很多人接触的第一个关于机器学习的视频大概就是Andrew Ng的课,入门课,讲的清晰易懂,涉及数学的方面也没有讲的很深奥,基本上都能听懂。如果数学基础差,也可以在网上搜一下这个课程的学习笔记,很多人总结的还是很好的,也很详细。唯一的不好就是这么课的编程语言是Octave,呃,相当于开源版的Matlab,但是在工作中用的不多(其实基本上不用。。),Python用的会比较多一点,所以可以看这个课程了解算法背后的原理,再用其他的编程语言(如Python,java等)来实现。

2.Machine Learning Foundations: A Case Study Approach by UW's Carlos Guestrin and Emily Fox

  除了介绍机器学习算法以外,还介绍了推荐系统和深度学习,这两个概念现在很火,值得一看。此外,讲的非常有趣,用的是Python,而且是真实数据集,看完可以直接上手工业界的项目了~

3. Intro to Statistical Learning by Trevor Hastie and Rob Tibshirani

  深入讲算法背后的统计和数学知识,相对于前两个课程,可能没那么有趣,毕竟数学 = =,而且在讲R的实操的时候会很啰嗦,有一些测试时错的,不太建议入门看这个,想补数学知识可以直接看上文说到的李航老师的《统计学习方法》。

其他: 

4. Mining Massive Datasets

5. Recommender Systems

6. Machine Learning Summer School:https://www.youtube.com/playlist?list=PLZSO_6-bSqHQCIYxE3ycGLXHMjK3XV7Iz


Books:

1. Hastie, Tibshirani, and Friedman's The Elements of Statistical Learning

2. Bishop's Pattern Recognition and Machine Learning

3. David Barber's Bayesian Reasoning and Machine Learning

4. Kevin Murphy's Machine learning: a Probabilistic Perspective

5. Foundations of Machine Learning,Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar

6. Learning From Data, Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin

7. Information Theory, Inference, and Learning Algorithms, David J. C. MacKay[free pdf]

8. All of Statistics, Larry Wasserman

9. Probabilistic Graphical Models: Principles and Techniques, Daphne Koller, Nir Friedman

10. Gaussian Processes For Machine Learning, Carl Edward Rasmussen, Christopher K. I. Williams [free pdf]

11. Machine Learning with R

12. Building Machine Learning Systems with Python

13. Machine Learning with Spark

14.  Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences): Gene H. Golub, Charles F. Van Loan: 9781421407944: Amazon.com: Books

15.  Amazon.com: Convex Optimization (9780521833783): Stephen Boyd, Lieven Vandenberghe: Books

16. Larry Wasserman's All of Statistics: A Concise Course in Statistical Inference


Applications and advanced topics:

1. Language modeling course and notes

2. Deep learning: ANN + CNN +RNN + NLP

3. Reinforcement learning and robotics

4. Memory and distributed representations

5. Neural models and vision

6. Cognition and lifelong learning

最后依然是Github的神总结:机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1)

  如果大家有好的书或者经验,欢迎留言~

参考文献:

1.How do I learn machine learning?(https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=1415807)

2.What is the best MOOC to get started in Machine Learning?(https://www.quora.com/What-is-the-best-MOOC-to-get-started-in-Machine-Learning/answer/Xavier-Amatriain)

3.机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1)(https://github.com/ty4z2008/Qix/blob/master/dl.md)

04-14 16:33