pandas用浮点值Nan表示浮点和非浮点数组中的缺失数据。它只是一个便于被检测的标记而已。
>>> string_data = Series(['aardvark','artichoke',np.nan,'avocado'])
>>> string_data
0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object
>>> string_data.isnull()
0 False
1 False
2 True
3 False
dtype: bool
>>> string_data.notnull()
0 True
1 True
2 False
3 True
dtype: bool
>>> string_data.fillna("miss")
0 aardvark
1 artichoke
2 miss
3 avocado
dtype: object
>>> string_data
0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object
NA处理方法
方法 | 说明 |
dropna | 根据个标签中的是否存在缺失数据进行过滤,可以通过阈值进行调整 |
fillna | 用指定值或插值来填充缺失数据 |
isnull | 返回一个含有布尔值的对象,这些布尔值表示哪些是缺失值,给对象的类型与原类型一样 |
notnull | isnull的否定式 |
特别说明dropna方法:
常用参数:
axis 指定轴
how :“any/all” any代表只有有缺失值,all代表一列全部缺失
thresh; 代表最少notnull值的个数,是一个整型。
滤除缺失数据
对于Series有两种方法实现:
>>> from numpy import nan as NA
>>>
>>>
>>> data = Series([1,NA,3.2,NA,5])
>>> data
0 1.0
1 NaN
2 3.2
3 NaN
4 5.0
dtype: float64
#方法一
>>> data.dropna()
0 1.0
2 3.2
4 5.0
dtype: float64
#方法二
>>> data[data.notnull()]
0 1.0
2 3.2
4 5.0
dtype: float64
而对于DataFrame对象,事情就有点复杂了。dropna默认丢弃任何含有缺失值的行。
>>> frame = DataFrame([[1,6.5,3],[1,NA,NA],[NA,NA,NA],[NA,6.5,3]])
>>>
>>>
>>>
>>> frame
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
>>> clean_data = frame.dropna()#默认丢弃所有含有缺失值的行
>>> clean_data
0 1 2
0 1.0 6.5 3.0 >>> frame.dropna(how ='all')#只丢弃全部是缺失值的行
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
3 NaN 6.5 3.0
>>> frame.dropna(axis = 1 ,how='all')#丢弃全部是缺失值的列
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
>>> frame.dropna(thresh =2)#丢弃剩余少于2个真实值的行
0 1 2
0 1.0 6.5 3.0
3 NaN 6.5 3.0
>>>
填充缺失数据
对于DataFrame对象
>>> df = DataFrame(np.random.randn(7,3))
>>> df.ix[:4 ,1] = NA
>>> df.ix[:2,2] =NA
>>> df
0 1 2
0 -1.362151 NaN NaN
1 -0.465262 NaN NaN
2 0.037518 NaN NaN
3 -2.895224 NaN -2.514141
4 -0.635875 NaN 1.722823
5 -0.479897 0.999354 -0.547433
6 -0.744960 0.363400 0.706812
>>> df.fillna(0) #元素级填充
0 1 2
0 -1.362151 0.000000 0.000000
1 -0.465262 0.000000 0.000000
2 0.037518 0.000000 0.000000
3 -2.895224 0.000000 -2.514141
4 -0.635875 0.000000 1.722823
5 -0.479897 0.999354 -0.547433
6 -0.744960 0.363400 0.706812
#根据不同的列填充不同的数值
>>> df.fillna({1:0.5,2:-1 })
0 1 2
0 -1.362151 0.500000 -1.000000
1 -0.465262 0.500000 -1.000000
2 0.037518 0.500000 -1.000000
3 -2.895224 0.500000 -2.514141
4 -0.635875 0.500000 1.722823
5 -0.479897 0.999354 -0.547433
6 -0.744960 0.363400 0.706812
>>> df.fillna(method ='bfill')#method方法选择前向或后向填充
0 1 2
0 -1.362151 0.999354 -2.514141
1 -0.465262 0.999354 -2.514141
2 0.037518 0.999354 -2.514141
3 -2.895224 0.999354 -2.514141
4 -0.635875 0.999354 1.722823
5 -0.479897 0.999354 -0.547433
6 -0.744960 0.363400 0.706812
>>> df.fillna(method ='bfill',limit =2)#限制后向填充为两行
0 1 2
0 -1.362151 NaN NaN
1 -0.465262 NaN -2.514141
2 0.037518 NaN -2.514141
3 -2.895224 0.999354 -2.514141
4 -0.635875 0.999354 1.722823
5 -0.479897 0.999354 -0.547433
6 -0.744960 0.363400 0.706812
>>>
fillna默认会返回新对象,如果需要就地修改元数据,可以加上inplace = True
>>> df.fillna(0,inplace = True)
>>> df
0 1 2
0 -1.362151 0.000000 0.000000
1 -0.465262 0.000000 0.000000
2 0.037518 0.000000 0.000000
3 -2.895224 0.000000 -2.514141
4 -0.635875 0.000000 1.722823
5 -0.479897 0.999354 -0.547433
6 -0.744960 0.363400 0.706812
fillna函数的参数
参数 | 说明 |
method | 前向或后向填充 |
value | 待填充的值或字典对象 |
axis | 待填充的轴 |
inplace | 修改调用者对象而不产生副本 |
limit | 前向或后向填充的最大数量 |
层次化索引
能使你在一个轴上拥有多个索引级别。
创建层次化索引
>>> data = Series(np.random.randn(10),index=[['a','a','a','b','b','b','c','c','d','d'],[1,2,3,1,2,3,1,2,1,2]])
>>> data
a 1 -0.450814
2 -0.776317
3 -0.140582
b 1 -0.717184
2 0.943802
3 0.972454
c 1 -0.390725
2 -1.340875
d 1 -0.648987
2 -0.960173
dtype: float64
>>> data.index
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 0, 1]])
>>>
利用层次化索引来选取子集
>>> data['a']
1 -0.450814
2 -0.776317
3 -0.140582
dtype: float64
>>> data['c':'d']
c 1 -0.390725
2 -1.340875
d 1 -0.648987
2 -0.960173
dtype: float64
>>> data.ix[['a','c']]
a 1 -0.450814
2 -0.776317
3 -0.140582
c 1 -0.390725
2 -1.340875
dtype: float64
选择内层子集
>>> data['a',2]
-0.7763173836675796
>>> data[:,2]
a -0.776317
b 0.943802
c -1.340875
d -0.960173
dtype: float64
利用stack和unstack可以实现层次化索引的Series和DataFrame的转换
>>> frame
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
>>> frame.stack()
0 0 1.0
1 6.5
2 3.0
1 0 1.0
3 1 6.5
2 3.0
dtype: float64
>>> data.unstack()
1 2 3
a -0.450814 -0.776317 -0.140582
b -0.717184 0.943802 0.972454
c -0.390725 -1.340875 NaN
d -0.648987 -0.960173 NaN
重排分级顺序
swaplevel根据给定的编号或name属性进行交换层次化索引
sortlevel 根据给定的级别的值进行排序
>>> frame = DataFrame(np.random.randn(5,4),index = [['a','a','a','b','b'],[1,2,3,1,2]],columns = pd.MultiIndex.from_arrays([['o','o','w','w'],[1,2,1,2]],names=['color','num']))
>>> frame
color o w
num 1 2 1 2
a 1 1.558178 1.614265 0.674642 -0.269209
2 -0.324755 -0.486829 -1.086918 -0.496748
3 0.283367 -0.518154 0.551998 0.747767
b 1 0.904257 1.315240 0.328065 -0.006465
2 0.249438 0.946020 1.572290 -0.198329
>>> frame.index.names = ['name','age']
>>> frame
color o w
num 1 2 1 2
name age
a 1 1.558178 1.614265 0.674642 -0.269209
2 -0.324755 -0.486829 -1.086918 -0.496748
3 0.283367 -0.518154 0.551998 0.747767
b 1 0.904257 1.315240 0.328065 -0.006465
2 0.249438 0.946020 1.572290 -0.198329
>>> frame.swaplevel('name','age')
color o w
num 1 2 1 2
age name
1 a 1.558178 1.614265 0.674642 -0.269209
2 a -0.324755 -0.486829 -1.086918 -0.496748
3 a 0.283367 -0.518154 0.551998 0.747767
1 b 0.904257 1.315240 0.328065 -0.006465
2 b 0.249438 0.946020 1.572290 -0.198329
>>> frame.sortlevel(1)
__main__:1: FutureWarning: sortlevel is deprecated, use sort_index(level= ...)
color o w
num 1 2 1 2
name age
a 1 1.558178 1.614265 0.674642 -0.269209
b 1 0.904257 1.315240 0.328065 -0.006465
a 2 -0.324755 -0.486829 -1.086918 -0.496748
b 2 0.249438 0.946020 1.572290 -0.198329
a 3 0.283367 -0.518154 0.551998 0.747767
>>> frame.sort_index(level = 1)#以后sortlevel会废弃,这里可以用sort_index的level选项排序
color o w
num 1 2 1 2
name age
a 1 1.558178 1.614265 0.674642 -0.269209
b 1 0.904257 1.315240 0.328065 -0.006465
a 2 -0.324755 -0.486829 -1.086918 -0.496748
b 2 0.249438 0.946020 1.572290 -0.198329
a 3 0.283367 -0.518154 0.551998 0.747767
可以根据级别汇总统计
许多对DataFrame和Series的描述和汇总统计都有一个level选项,用于指定在某条轴上算术运算的级别
>>> frame.sum(level = 'age')
color o w
num 1 2 1 2
age
1 2.462435 2.929505 1.002707 -0.275673
2 -0.075318 0.459191 0.485372 -0.695077
3 0.283367 -0.518154 0.551998 0.747767
>>> frame.sum(level = 'color',axis =1)
color o w
name age
a 1 3.172443 0.405433
2 -0.811584 -1.583666
3 -0.234786 1.299765
b 1 2.219497 0.321600
2 1.195458 1.373961
>>>
使用DataFrame的列完成层次化行索引的转化
>>> frame = DataFrame({'a':range(7),'b':range(7,0,-1),'c':['o','o','o','t','t','f','f'],'d':[1,2,3,4,1,2,3]})
>>> frame
a b c d
0 0 7 o 1
1 1 6 o 2
2 2 5 o 3
3 3 4 t 4
4 4 3 t 1
5 5 2 f 2
6 6 1 f 3
>>> frame2 = frame.set_index(['c','d'])#将一个或多个列转换为行索引
>>> frame2
a b
c d
o 1 0 7
2 1 6
3 2 5
t 4 3 4
1 4 3
f 2 5 2
3 6 1
>>> frame2.reset_index(['c','d'])#将层次化索引转换为列
c d a b
0 o 1 0 7
1 o 2 1 6
2 o 3 2 5
3 t 4 3 4
4 t 1 4 3
5 f 2 5 2
6 f 3 6 1
在将列转换为层次化行索引的时候,默认会删除原来的列,如果要保留的话,需要drop选项
>>> frame3 = frame.set_index(['c','d'],drop=False)
>>> frame3
a b c d
c d
o 1 0 7 o 1
2 1 6 o 2
3 2 5 o 3
t 4 3 4 t 4
1 4 3 t 1
f 2 5 2 f 2
3 6 1 f 3