题意:给你一个可能不正确的算式a + b = c, 你可以在a,b,c中随意添加数字。输出一个添加数字最少的新等式x + y = z;
思路:来源于这片博客:https://www.cnblogs.com/ljh2000-jump/p/5886279.html。
我们可以从个位开始搜索。如果现在c % 10 == (a % 10 + b % 10 + pre) % 10 (pre是之前的进位),那么直接把a, b, c的个位消去,加上进位继续深搜。如果不满足这个条件,我们可以考虑从a, b, c3个数中选一个数添加满足关系的一位,然后继续深搜。
代码:
#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
int ans = INF;
LL ans_a, ans_b, ans_c;
LL p[20];
void dfs(LL a, LL b, LL c, LL nowa, LL nowb, LL nowc, LL pre, int now, int deep) {
if(now >= ans) return;
if(a == 0 && b == 0 && c == 0 && pre == 0) {
ans = now;
ans_a = nowa;
ans_b = nowb;
ans_c = nowc;
return;
}
if(c == 0) {
LL tmp = a + b + pre;
int cnt = 0;
while(tmp) {
cnt++;
tmp /= 10;
}
dfs(0, 0, 0, nowa + p[deep] * a, nowb + p[deep] * b, nowc + p[deep] * (a + b + pre), 0, now + cnt, deep + 1);
return;
}
if((a + b + pre) % 10 == c % 10) {
dfs(a / 10, b / 10, c / 10, nowa + (a % 10) * p[deep], nowb + (b % 10) * p[deep], nowc + (c % 10) * p[deep], (a %10 + b % 10 + pre) / 10, now, deep + 1);
return;
}
dfs(a * 10 + (c % 10 - b % 10 - pre + 10) % 10, b, c, nowa, nowb, nowc, pre, now + 1, deep);
dfs(a, b * 10 + (c % 10 - a % 10 - pre + 10) % 10, c, nowa, nowb, nowc, pre, now + 1, deep);
dfs(a, b, c * 10 + (a % 10 + b % 10 + pre) % 10, nowa, nowb, nowc, pre, now + 1, deep);
}
int main() {
LL a, b, c;
scanf("%lld+%lld=%lld", &a, &b, &c);
p[0] = 1;
for (int i = 1; i <= 18; i++)
p[i] = p[i - 1] * 10;
dfs(a, b, c, 0, 0, 0, 0, 0, 0);
printf("%lld+%lld=%lld",ans_a, ans_b, ans_c);
}