题目背景
原 A-B数对(增强版)参见P1102
题目描述
克里特岛以野人群居而著称。岛上有排列成环行的M个山洞。这些山洞顺时针编号为1,2,…,M。岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来。
每个野人i有一个寿命值Li,即生存的年数。
下面四幅图描述了一个有6个山洞,住有三个野人的岛上前四年的情况。三个野人初始的洞穴编号依次为1,2,3;每年要走过的洞穴数依次为3,7,2;寿命值依次为4,3,1。
奇怪的是,虽然野人有很多,但没有任何两个野人在有生之年处在同一个山洞中,使得小岛一直保持和平与宁静,这让科学家们很是惊奇。他们想知道,至少有多少个山洞,才能维持岛上的和平呢?
输入输出格式
输入格式:
第1行为一个整数N(1<=N<=15),即野人的数目。
第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0<=Li<=106 ),表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。
输出格式:
仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。
输入输出样例
3
1 3 4
2 7 3
3 2 1
6
说明
对于50% 的数据:N 的范围是[1…1,000]。
对于另外50% 的数据:N 的范围是[1…100,000]。
对于100% 的数据:C 的范围是[1…1,000,000,000],N 个整数中每个数的范围是:[0…1,000,000,000]。
我居然切了一道紫题??!!好开心qwq
设第$i$个人的寿命为$x_i$,每次走$y_i$,刚开始在$a$,
若洞穴数为$b$,那么我们需要找到最小的$b$满足对于任意的两个野人$i,j$
$a_i+y_i * T_i \not \equiv a_j + y_j + T_j \pmod b$,$T$表示第几年。
然后这个是个标准的欧几里得式子
枚举一个$b$,判断就好了
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN = , B = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N;
struct Node {
int bg, step, life;
bool operator < (const Node &rhs) const {
return this -> step < rhs.step;
}
}a[MAXN];
int x, y;
int exgcd(int a, int b, int &x, int &y) {
if(b == ) {
x = , y = ; return a;
}
int r = exgcd(b, a % b, x, y);
int tmp = x; x = y, y = tmp - (a / b) * y;
return r;
}
bool check(int X) {
for(int i = ; i <= N; i++) {
for(int j = ; j <= i - ; j++) {
int B = X;
int A = a[i].step - a[j].step, C = a[j].bg - a[i].bg, r = __gcd(A, B);
if(C % r != ) continue;
A = A / r; B = B / r; C = C / r;
exgcd(A, B, x, y);
x = (x * C) % B;
while(x < ) x += B;
if(x <= a[i].life && x <= a[j].life) return ;
}
}
return ;
}
main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
N = read();
int fuck = ;
for(int i = ; i <= N; i++)
a[i].bg = read(), a[i].step = read(), a[i].life = read(),
fuck = max(fuck, a[i].bg);
sort(a + , a + N + );
for(int i = fuck; i <= 1e6; i++)//一定要从最大值开始,,好坑。。
if(check(i))
{printf("%d\n", i); exit();}
}