dijkstra基础

扫码查看
#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std; #define N 505
#define inf 0x3f3f3f3f int path[N];//输出路径 存放的是i的前一个点 path[j]=u;
int n,e,m,s;
int vis[N],dis[N],mp[N][N];
int city[N];//为权值 第一优先级为最短路 第二优先级为权值最或者最小 此为第二类权值(和点相连) 还有一种权值为和路相连 那种更简单
int peo[N];
int pathnum[N];//最短路的条数!!! 初始为1 只要在路径相同时累合即可 void dijkstra(int s)
{
memset(vis,,sizeof vis); for(int i=;i<n;i++)
dis[i]=mp[s][i];
dis[s]=; path[s]=-;
peo[s]=city[s];
pathnum[s]=; //明确规定不加vis[s] for(int i=;i<=n;i++)
{
int minn=inf,u=-;
for(int j=;j<n;j++)
if(!vis[j]&&minn>dis[j])
minn=dis[u=j]; if(u==-)return;
vis[u]=; for(int j=;j<n;j++)
{ if(dis[j]>dis[u]+mp[u][j])
{
// pathnum[j]=pathnum[u];//最短路条数
dis[j]=dis[u]+mp[u][j];
path[j]=u;
peo[j]=peo[u]+city[j];
}
else if(dis[j]==dis[u]+mp[u][j])
{
// pathnum[j]+=pathnum[u];//最短路条数
if(peo[j]<peo[u]+city[j])
{
path[j]=u;
peo[j]=peo[u]+city[j];
}
}
}
}
} void print(int x)
{
if(path[x]==-)
{printf("%d",x);return;}
print(path[x]);
printf(" %d",x);
return ;
} int main()
{
scanf("%d%d%d%d",&n,&m,&s,&e);
for(int i=;i<n;i++)scanf("%d",&city[i]); for(int i=;i<n;i++)
for(int j=;j<n;j++)
mp[i][j]=inf;//如果加上 i==j 时mp为0 则可以反复刷权值 while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(mp[a][b]>c)mp[a][b]=mp[b][a]=c;
}
dijkstra(s);
printf("%d %d\n", pathnum[e] ,peo[e] );
print(e);
return ;
}

用堆优化

#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f
#define N 3000
int head[N];
int pos;
struct node
{
int v,to,nex;
}edge[N<<];
void add(int a,int b,int c)
{
edge[++pos].nex=head[a];
head[a]=pos;
edge[pos].v=c;
edge[pos].to=b;
}
struct Node
{
int d,id; bool operator<(Node b)const
{
return d>b.d;
}
};
int n;
int dis[N],vis[N]; void dijkstra(int s)
{
rep(i,,n)
dis[i]=inf;
dis[s]=;
priority_queue<Node>q;
q.push(Node{,s});
while(!q.empty())
{
Node u=q.top();q.pop();
if(vis[u.id])continue;
vis[u.id]=;
for(int i=head[u.id];i;i=edge[i].nex)
{
int v=edge[i].to;
if(u.d+edge[i].v<dis[v])
{
dis[v]=u.d+edge[i].v;
q.push(Node{dis[v],v});
}
}
}
}
int main()
{
int m,s,t;
RII(n,m);RII(s,t);
while(m--)
{
int a,b,c;
RIII(a,b,c);
add(a,b,c);
add(b,a,c);
}
dijkstra(s);
cout<<dis[t]; return ;
}
05-07 15:08
查看更多