题意:在w*h(最大100*100)的棋盘上,有的格子中放有一棵树,有的没有。问s*t的小矩形,最多能含有多少棵树。

解法:最直接的想法,设d[x1][y1][x2][y2]表示选择以(x1, y1)为左下角,以(x2, y2)为右上角的矩形含有多少棵树。然后就可以很容易地递推了。可是空间复杂度为O(10^8)不能被接受。

   又发现d[x1][y1][x2][y2] = d[1][1][x2][y2] - d[1][1][x1-1][y2] - d[1][1][x2][y1-1] + d[1][1][x1-1][y1-1],所以只需要预处理出所有的d[1][1][i][j]即可,然后每次求出一个d[x1][y1][x2][y2]就与ans比较,不用存下来。

tag:DP

 /*
* Author: Plumrain
* Created Time: 2013-11-18 01:05
* File Name: DP-POJ-2029.cpp
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; #define CLR(x) memset(x, 0, sizeof(x)) int n, w, h, s, t;
bool has[][];
int d[][][][]; void init()
{
scanf ("%d%d", &w, &h);
int t1, t2;
CLR (has);
for (int i = ; i < n; ++ i){
scanf ("%d%d", &t1, &t2);
has[t1][t2] = ;
}
scanf ("%d%d", &s, &t);
} int DP()
{
int ret = ;
CLR (d);
ret = d[][][][] = has[][];
for (int i = ; i <= w; ++ i)
d[][][i][] = d[][][i-][] + has[i][];
for (int i = ; i <= h; ++ i)
d[][][][i] = d[][][][i-] + has[][i]; for (int i = ; i <= w; ++ i)
for (int j = ; j <= h; ++ j)
d[][][i][j] = has[i][j] + d[][][i-][j] + d[][][i][j-] - d[][][i-][j-]; for (int x1 = ; x1 <= w; ++ x1)
for (int y1 = ; y1 <= h; ++ y1)
for (int x2 = x1; x2 <= min(x1+s-, w); ++ x2)
for (int y2 = y1; y2 <= min(y1+t-, h); ++ y2)
ret = max(ret, d[][][x2][y2] - d[][][x1-][y2] - d[][][x2][y1-] + d[][][x1-][y1-]);
return ret;
} int main()
{
while (scanf ("%d", &n) != EOF && n){
init();
printf ("%d\n", DP());
}
return ;
}
04-18 19:39
查看更多