apache spark是什么意思?
Apache Spark是一个强大的开源处理引擎,最初由Matei Zaharia开发,是他在加州大学伯克利分校的博士论文的一部分。Spark的第一个版本于2012年发布。
Apache Spark是快速、易于使用的框架,允许你解决各种复杂的数据问题,无论是半结构化、结构化、流式,或机器学习、数据科学。它也已经成为大数据方面最大的开源社区之一,拥有来自250多个组织的超过1000个贡献者,以及遍布全球570多个地方的超过30万个Spark Meetup社区成员。
什么是Apache Spark?
Apache Spark是一个开源的、强大的分布式查询和处理引擎。它提供MapReduce的灵活性和可扩展性,但速度明显更高:当数据存储在内存中时,它比Apache Hadoop快100倍,访问磁盘时高达10倍。
Apache Spark允许用户读取、转换、聚合数据,还可以轻松地训练和部署复杂的统计模型。Java、Scala、Python、R和SQL都可以访问 Spark API。
Apache Spark可用于构建应用程序,或将其打包成为要部署在集群上的库,或通过笔记本(notebook)(例如Jupyter、Spark-Notebook、Databricks notebooks和Apache Zeppelin)交互式执行快速的分析。
Apache Spark提供的很多库会让那些使用过Python的pandas或R语言的data.frame 或者data.tables的数据分析师、数据科学家或研究人员觉得熟悉。非常重要的一点是,虽然Spark DataFrame会让pandas或data.frame、data.tables用户感到熟悉,但是仍有一些差异,所以不要期望过高。具有更多SQL使用背景的用户也可以用该语言来塑造其数据。
此外,Apache Spark还提供了几个已经实现并调优过的算法、统计模型和框架:为机器学习提供的MLlib和ML,为图形处理提供的GraphX和GraphFrames,以及Spark Streaming(DStream和Structured)。Spark允许用户在同一个应用程序中随意地组合使用这些库。
Apache Spark可以方便地在本地笔记本电脑上运行,而且还可以轻松地在独立模式下通过YARN或Apache Mesos于本地集群或云中进行部署。它可以从不同的数据源读取和写入,包括(但不限于)HDFS、Apache Cassandra、Apache HBase和S3:
以上就是apache spark是什么意思的详细内容,更多请关注Work网其它相关文章!