铭文一级:
需求二:
Agent选型:exec source + memory channel + logger sink
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/hadoop/data/data.log
a1.sources.r1.shell = /bin/sh -c
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
启动agent
flume-ng agent \
--name a1 \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-logger.conf \
-Dflume.root.logger=INFO,console
需求三:
技术选型:
exec source + memory channel + avro sink
avro source + memory channel + logger sink
exec-memory-avro.conf
exec-memory-avro.sources = exec-source
exec-memory-avro.sinks = avro-sink
exec-memory-avro.channels = memory-channel
exec-memory-avro.sources.exec-source.type = exec
exec-memory-avro.sources.exec-source.command = tail -F /home/hadoop/data/data.log
exec-memory-avro.sources.exec-source.shell = /bin/sh -c
exec-memory-avro.sinks.avro-sink.type = avro
exec-memory-avro.sinks.avro-sink.hostname = hadoop000
exec-memory-avro.sinks.avro-sink.port = 44444
exec-memory-avro.channels.memory-channel.type = memory
exec-memory-avro.sources.exec-source.channels = memory-channel
exec-memory-avro.sinks.avro-sink.channel = memory-channel
avro-memory-logger.conf
avro-memory-logger.sources = avro-source
avro-memory-logger.sinks = logger-sink
avro-memory-logger.channels = memory-channel
avro-memory-logger.sources.avro-source.type = avro
avro-memory-logger.sources.avro-source.bind = hadoop000
avro-memory-logger.sources.avro-source.port = 44444
avro-memory-logger.sinks.logger-sink.type = logger
avro-memory-logger.channels.memory-channel.type = memory
avro-memory-logger.sources.avro-source.channels = memory-channel
avro-memory-logger.sinks.logger-sink.channel = memory-channel
先启动avro-memory-logger
flume-ng agent \
--name avro-memory-logger \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/avro-memory-logger.conf \
-Dflume.root.logger=INFO,console
flume-ng agent \
--name exec-memory-avro \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-avro.conf \
-Dflume.root.logger=INFO,console
第四章:分布式发布订阅消息系统Kafka
Kafka概述
和消息系统类似
消息中间件:生产者和消费者
妈妈:生产者
你:消费者
馒头:数据流、消息
正常情况下: 生产一个 消费一个
其他情况:
一直生产,你吃到某一个馒头时,你卡主(机器故障), 馒头就丢失了
一直生产,做馒头速度快,你吃来不及,馒头也就丢失了
拿个碗/篮子,馒头做好以后先放到篮子里,你要吃的时候去篮子里面取出来吃
篮子/框: Kafka
当篮子满了,馒头就装不下了,咋办?
多准备几个篮子 === Kafka的扩容
Kafka架构
producer:生产者,就是生产馒头(老妈)
consumer:消费者,就是吃馒头的(你)
broker:篮子
topic:主题,给馒头带一个标签,topica的馒头是给你吃的,topicb的馒头是给你弟弟吃
铭文二级:
需求二=>
监听某个文件实时采集新增的数据输出到控制台
Agent的选型(exec source:监听文件; avro sink:跨服务器节点):
配置文件一:exec-memory-avro.conf(运行时后启动)
配置文件二:avro-memory-logger.conf(运行时先启动)
步骤:
1、先创建一个文件=>
touch ~/app/data/data.log
2、修改配置文件=>
配置文件一(注意agent、source、channel、sink的名字需要修改,不可以跟前面配置的a1、r1、k1、c1一样):
exec source:需要配置 type:exec 与command:tail -F /home/hadoop/data/data.log
avro sink:需要配置 type:avro 与hostname:hadoop000 和port:44444
配置文件二:
avro source:需要配置 type:avro 与bind:hadoop000 和port:44444
3、启动配置文件=>
开启两个终端:先启动后面有东西装的、再启动前面的
4、在第三个终端进入data文件夹:
echo "hello" >> data.log
echo "world" >> data.log
5、观察avro source终端可看到有内容输出(输入内容少时有一点点延迟是因为memory有大小与时间限制)
第四章:分布式发布订阅消息系统Kafka
Kafka四个核心概念:producer、consumer、broker、topic
三种模式:单节点单Broker、单节点多Broker、多节点多Broker
因为Kafka运行在zooKeeper上,所以需先装zooKeeper(wget CDH5即可)
1.创建临时文件目录 mkdir /home/hadoop/app/tmp/zk(如用默认的每次启动文件会丢失)
2.配置好环境变量后需修改conf文件夹下的配置文件:cp zoo.sample.cfg zoo.cfg
dataDir=/home/hadoop/tmp/zk
3.进入bin目录执行:./zkServer.sh start
4.联上客户端(在当前终端执行):./zkCli.sh
然后执行可查所开启的进程:jps
执行:ls /(可查看详细目录与内容)