6*6的数据集制造、与识别:
#6*6的数据集的制作、与识别、测试、输出等
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()
def forward(self, x):
out = self.relu(self.fc1(x))
out = self.relu(self.fc2(out))
out = self.fc3(out)
return out
# 数据准备
train_data = torch.tensor([
[[0,0,1,0,0,0],[0,0,1,0,0,0],[0,0,1,0,0,0],[0,0,1,0,0,0],[0,0,1,0,0,0],[0,0,1,0,0,0]],
[[0,0,0,0,0,0],[0,0,0,0,0,0],[1,1,1,1,1,1],[1,1,1,1,1,1],[0,0,0,0,0,0],[0,0,0,0,0,0]],
# ... 其他训练数据
] , dtype=torch.float32 )
train_labels = torch.tensor([
[1,0,0,0,0,0,0],