下面由golang教程栏目给大家介绍golang中Context的使用场景,希望对需要的朋友有所帮助!
golang中Context的使用场景
context在Go1.7之后就进入标准库中了。它主要的用处如果用一句话来说,是在于控制goroutine的生命周期。当一个计算任务被goroutine承接了之后,由于某种原因(超时,或者强制退出)我们希望中止这个goroutine的计算任务,那么就用得到这个Context了。
本文主要来盘一盘golang中context的一些使用场景:
场景一:RPC调用
在主goroutine上有4个RPC,RPC2/3/4是并行请求的,我们这里希望在RPC2请求失败之后,直接返回错误,并且让RPC3/4停止继续计算。这个时候,就使用的到Context。
这个的具体实现如下面的代码。
package main import ( "context" "sync" "github.com/pkg/errors" ) func Rpc(ctx context.Context, url string) error { result := make(chan int) err := make(chan error) go func() { // 进行RPC调用,并且返回是否成功,成功通过result传递成功信息,错误通过error传递错误信息 isSuccess := true if isSuccess { result <- 1 } else { err <- errors.New("some error happen") } }() select { case <- ctx.Done(): // 其他RPC调用调用失败 return ctx.Err() case e := <- err: // 本RPC调用失败,返回错误信息 return e case <- result: // 本RPC调用成功,不返回错误信息 return nil } } func main() { ctx, cancel := context.WithCancel(context.Background()) // RPC1调用 err := Rpc(ctx, "http://rpc_1_url") if err != nil { return } wg := sync.WaitGroup{} // RPC2调用 wg.Add(1) go func(){ defer wg.Done() err := Rpc(ctx, "http://rpc_2_url") if err != nil { cancel() } }() // RPC3调用 wg.Add(1) go func(){ defer wg.Done() err := Rpc(ctx, "http://rpc_3_url") if err != nil { cancel() } }() // RPC4调用 wg.Add(1) go func(){ defer wg.Done() err := Rpc(ctx, "http://rpc_4_url") if err != nil { cancel() } }() wg.Wait() }
当然我这里使用了waitGroup来保证main函数在所有RPC调用完成之后才退出。
在Rpc函数中,第一个参数是一个CancelContext, 这个Context形象的说,就是一个传话筒,在创建CancelContext的时候,返回了一个听声器(ctx)和话筒(cancel函数)。所有的goroutine都拿着这个听声器(ctx),当主goroutine想要告诉所有goroutine要结束的时候,通过cancel函数把结束的信息告诉给所有的goroutine。当然所有的goroutine都需要内置处理这个听声器结束信号的逻辑(ctx->Done())。我们可以看Rpc函数内部,通过一个select来判断ctx的done和当前的rpc调用哪个先结束。
这个waitGroup和其中一个RPC调用就通知所有RPC的逻辑,其实有一个包已经帮我们做好了。errorGroup。具体这个errorGroup包的使用可以看这个包的test例子。
有人可能会担心我们这里的cancel()会被多次调用,context包的cancel调用是幂等的。可以放心多次调用。
我们这里不妨品一下,这里的Rpc函数,实际上我们的这个例子里面是一个“阻塞式”的请求,这个请求如果是使用http.Get或者http.Post来实现,实际上Rpc函数的Goroutine结束了,内部的那个实际的http.Get却没有结束。所以,需要理解下,这里的函数最好是“非阻塞”的,比如是http.Do,然后可以通过某种方式进行中断。比如像这篇文章Cancel http.Request using Context中的这个例子:
func httpRequest( ctx context.Context, client *http.Client, req *http.Request, respChan chan []byte, errChan chan error ) { req = req.WithContext(ctx) tr := &http.Transport{} client.Transport = tr go func() { resp, err := client.Do(req) if err != nil { errChan <- err } if resp != nil { defer resp.Body.Close() respData, err := ioutil.ReadAll(resp.Body) if err != nil { errChan <- err } respChan <- respData } else { errChan <- errors.New("HTTP request failed") } }() for { select { case <-ctx.Done(): tr.CancelRequest(req) errChan <- errors.New("HTTP request cancelled") return case <-errChan: tr.CancelRequest(req) return } } }
它使用了http.Client.Do,然后接收到ctx.Done的时候,通过调用transport.CancelRequest来进行结束。
我们还可以参考net/dail/DialContext
换而言之,如果你希望你实现的包是“可中止/可控制”的,那么你在你包实现的函数里面,最好是能接收一个Context函数,并且处理了Context.Done。
场景二:PipeLine
pipeline模式就是流水线模型,流水线上的几个工人,有n个产品,一个一个产品进行组装。其实pipeline模型的实现和Context并无关系,没有context我们也能用chan实现pipeline模型。但是对于整条流水线的控制,则是需要使用上Context的。这篇文章Pipeline Patterns in Go的例子是非常好的说明。这里就大致对这个代码进行下说明。
runSimplePipeline的流水线工人有三个,lineListSource负责将参数一个个分割进行传输,lineParser负责将字符串处理成int64,sink根据具体的值判断这个数据是否可用。他们所有的返回值基本上都有两个chan,一个用于传递数据,一个用于传递错误。(<-chan string, <-chan error)输入基本上也都有两个值,一个是Context,用于传声控制的,一个是(in <-chan)输入产品的。
我们可以看到,这三个工人的具体函数里面,都使用switch处理了case <-ctx.Done()。这个就是生产线上的命令控制。
func lineParser(ctx context.Context, base int, in <-chan string) ( <-chan int64, <-chan error, error) { ... go func() { defer close(out) defer close(errc) for line := range in { n, err := strconv.ParseInt(line, base, 64) if err != nil { errc <- err return } select { case out <- n: case <-ctx.Done(): return } } }() return out, errc, nil }
场景三:超时请求
我们发送RPC请求的时候,往往希望对这个请求进行一个超时的限制。当一个RPC请求超过10s的请求,自动断开。当然我们使用CancelContext,也能实现这个功能(开启一个新的goroutine,这个goroutine拿着cancel函数,当时间到了,就调用cancel函数)。
鉴于这个需求是非常常见的,context包也实现了这个需求:timerCtx。具体实例化的方法是 WithDeadline 和 WithTimeout。
具体的timerCtx里面的逻辑也就是通过time.AfterFunc来调用ctx.cancel的。
官方的例子:
package main import ( "context" "fmt" "time" ) func main() { ctx, cancel := context.WithTimeout(context.Background(), 50*time.Millisecond) defer cancel() select { case <-time.After(1 * time.Second): fmt.Println("overslept") case <-ctx.Done(): fmt.Println(ctx.Err()) // prints "context deadline exceeded" } }
在http的客户端里面加上timeout也是一个常见的办法
uri := "https://httpbin.org/delay/3" req, err := http.NewRequest("GET", uri, nil) if err != nil { log.Fatalf("http.NewRequest() failed with '%s'\n", err) } ctx, _ := context.WithTimeout(context.Background(), time.Millisecond*100) req = req.WithContext(ctx) resp, err := http.DefaultClient.Do(req) if err != nil { log.Fatalf("http.DefaultClient.Do() failed with:\n'%s'\n", err) } defer resp.Body.Close()
在http服务端设置一个timeout如何做呢?
package main import ( "net/http" "time" ) func test(w http.ResponseWriter, r *http.Request) { time.Sleep(20 * time.Second) w.Write([]byte("test")) } func main() { http.HandleFunc("/", test) timeoutHandler := http.TimeoutHandler(http.DefaultServeMux, 5 * time.Second, "timeout") http.ListenAndServe(":8080", timeoutHandler) }
我们看看TimeoutHandler的内部,本质上也是通过context.WithTimeout来做处理。
func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { ... ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt) defer cancelCtx() ... go func() { ... h.handler.ServeHTTP(tw, r) }() select { ... case <-ctx.Done(): ... } }
场景四:HTTP服务器的request互相传递数据
context还提供了valueCtx的数据结构。
这个valueCtx最经常使用的场景就是在一个http服务器中,在request中传递一个特定值,比如有一个中间件,做cookie验证,然后把验证后的用户名存放在request中。
我们可以看到,官方的request里面是包含了Context的,并且提供了WithContext的方法进行context的替换。
package main import ( "net/http" "context" ) type FooKey string var UserName = FooKey("user-name") var UserId = FooKey("user-id") func foo(next http.HandlerFunc) http.HandlerFunc { return func(w http.ResponseWriter, r *http.Request) { ctx := context.WithValue(r.Context(), UserId, "1") ctx2 := context.WithValue(ctx, UserName, "yejianfeng") next(w, r.WithContext(ctx2)) } } func GetUserName(context context.Context) string { if ret, ok := context.Value(UserName).(string); ok { return ret } return "" } func GetUserId(context context.Context) string { if ret, ok := context.Value(UserId).(string); ok { return ret } return "" } func test(w http.ResponseWriter, r *http.Request) { w.Write([]byte("welcome: ")) w.Write([]byte(GetUserId(r.Context()))) w.Write([]byte(" ")) w.Write([]byte(GetUserName(r.Context()))) } func main() { http.Handle("/", foo(test)) http.ListenAndServe(":8080", nil) }
在使用ValueCtx的时候需要注意一点,这里的key不应该设置成为普通的String或者Int类型,为了防止不同的中间件对这个key的覆盖。最好的情况是每个中间件使用一个自定义的key类型,比如这里的FooKey,而且获取Value的逻辑尽量也抽取出来作为一个函数,放在这个middleware的同包中。这样,就会有效避免不同包设置相同的key的冲突问题了。
以上就是你知道golang中Context的使用场景有哪些吗的详细内容,更多请关注Work网其它相关文章!