更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行。他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始代码更加简洁易懂)。实验结果表明,这种方法在计算的斐波那契数列足够长时,可以提高性能。
矩阵方式计算斐波那契数列的原理:
代码:
#include <tbb/task_scheduler_init.h>
#include <tbb/blocked_range.h>
#include <tbb/parallel_reduce.h>
#include <tbb/tick_count.h>
#include <stdio.h> using namespace std;
using namespace tbb; //! Matrix 2x2 class
struct Matrix2x2
{
//! Array of unsigned ints
unsigned int v[][];
Matrix2x2() {}
Matrix2x2(unsigned int v00, unsigned int v01, unsigned int v10, unsigned int v11) {
v[][] = v00; v[][] = v01; v[][] = v10; v[][] = v11;
}
Matrix2x2 operator * (const Matrix2x2 &to) const; //< Multiply two Matrices
};
//! matrix to be multiplied
static const Matrix2x2 Matrix1110(, , , ); //! Identify matrix to be served as the base of the product
static const Matrix2x2 Matrix1001(, , , ); //! Raw arrays matrices multiply
void Matrix2x2Multiply(const unsigned int a[][], const unsigned int b[][], unsigned int c[][])
{
for( int i = ; i <= ; i++)
for( int j = ; j <= ; j++)
c[i][j] = a[i][]*b[][j] + a[i][]*b[][j];
} Matrix2x2 Matrix2x2::operator *(const Matrix2x2 &to) const
{
Matrix2x2 result;
Matrix2x2Multiply(v, to.v, result.v);
return result;
} unsigned int serialFibo(unsigned int n)
{
if (n < ) {
return n;
}
else
{
Matrix2x2 product = Matrix1110;
for (int i = ; i < n; i++)
{
product = Matrix1110*product;
}
return product.v[][];
}
} //! Functor for parallel_reduce
struct parallel_reduceFibBody {
Matrix2x2 product; //! Constructor fills product with initial matrix
parallel_reduceFibBody() : product( Matrix1001 ) { }
//! Splitting constructor
parallel_reduceFibBody( parallel_reduceFibBody& other, split ) : product( Matrix1001 ){}
//! Join point
void join( parallel_reduceFibBody &s ) {
product = product * s.product;
}
//! Process multiplications
void operator()( const blocked_range<int> &r ) {
for( int k = r.begin(); k < r.end(); ++k )
product = product * Matrix1110;
}
}; unsigned int parallelFibo(unsigned int n)
{
parallel_reduceFibBody b;
parallel_reduce(blocked_range<int>(, n, ), b);
return b.product.v[][];
} int main(int argc, const char * argv[])
{
task_scheduler_init init; unsigned int a = ; // serial Fibo
//
tick_count start1 = tick_count::now();
unsigned int serialResult = serialFibo(a);
tick_count end1 = tick_count::now();
tick_count::interval_t time1 = end1 - start1;
printf("serial fibo(%u) = %u, calculated in %f seconds\n", a, serialResult, time1.seconds()); // parallel Fibo
//
tick_count start2 = tick_count::now();
unsigned int parallelResult = parallelFibo(a);
tick_count end2 = tick_count::now();
tick_count::interval_t time2 = end2 - start2;
printf("parallel fibo(%u) = %u, calculated in %f seconds\n", a, parallelResult, time2.seconds()); return ;
}
实验结果:
serial fibo(40000) = 160266427, calculated in 0.001070 seconds
parallel fibo(40000) = 160266427, calculated in 0.000568 seconds
=====================以下为老的博文==========================
今天给公司同事做关于并行编程的内部培训,大家对是否能用并行的方法计算斐波那契数列(Fibonacci),以及使用并行的方法能否提高其性能进行了一些讨论。
我的结论是:
1.可以使用并行的方法计算。
2. 至于能否提高性能,与计算斐波那契数列的实现方式有关。若采用最基础的递归方式,则对于“类似递归实现的计算斐波那契数列问题”,如果问题的计算量够大,则可能提高性能。如果用循环的方式实现斐波那契数列,则并行无论如何无法提高性能。
下面利用苹果的并行程序库GCD(Grand Central Dispatch),写了一段代码来验证我的结论。为了仿真“大计算量的用递归实现的类斐波那契数列问题”,我在计算斐波那契数列的函数里加入了sleep 两秒的语句。实验结果显示,仅在这种方式下并行可以提高性能。
下面是代码和实验结果:
代码:
#import <Foundation/Foundation.h> unsigned int recursiveFibo(unsigned int n)
{
[NSThread sleepForTimeInterval:2]; if (n < 2)
return n;
else
return recursiveFibo(n-1) + recursiveFibo(n-2);
} unsigned int loopFibo(unsigned int n)
{
if (n < 2)
{
[NSThread sleepForTimeInterval:2];
return n;
}
else
{
int fisub1 = 1;
int fisub2 = 0; int fi = 0;
for (unsigned int i = 2; i < n+1; i++)
{
[NSThread sleepForTimeInterval:2];
fi = fisub1 + fisub2;
fisub2 = fisub1;
fisub1 = fi;
} return fi;
}
} int main(int argc, const char* argv[])
{
unsigned int a = 6; NSLog(@"serial caculating Fibonacci(%u)...", a);
double start1 = [[NSDate date] timeIntervalSince1970];
unsigned int fibo1 = loopFibo(a);
double end1 = [[NSDate date] timeIntervalSince1970];
NSLog(@"fibonacci(%u) = %u, cost %f seconds", a, fibo1, end1-start1); NSLog(@"parallel calculateing Fibonacci(%u)...", a);
double start2 = [[NSDate date] timeIntervalSince1970];
__block unsigned int fibo2sub1 = 0;
__block unsigned int fibo2sub2 = 0;
dispatch_group_t group = dispatch_group_create();
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{fibo2sub1 = loopFibo(a-1);});
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{fibo2sub2 = loopFibo(a-2);});
dispatch_group_wait(group, DISPATCH_TIME_FOREVER); [NSThread sleepForTimeInterval:2];
unsigned int fibo2 = fibo2sub1 + fibo2sub2;
double end2 = [[NSDate date] timeIntervalSince1970];
NSLog(@"fibonacci(%u) = %u, cost %f seconds", a, fibo2, end2 - start2); dispatch_release(group); return (0);
} //main
实验结果:
如果用递归实现(主程序中调用recursiveFibo),
对于“大计算量的类斐波那契数列问题”,并行可以提高性能。
2013-07-18 17:42:04.613 recursiveFibo[34666:303] serial caculating Fibonacci(6)...
2013-07-18 17:42:54.636 recursiveFibo[34666:303] fibonacci(6) = 8, cost 50.021813 seconds
2013-07-18 17:42:54.637 recursiveFibo[34666:303] parallel calculateing Fibonacci(6)...
2013-07-18 17:43:26.651 recursiveFibo[34666:303] fibonacci(6) = 8, cost 32.013492 seconds
如果把代码中的sleep语句全部注释掉,单纯计算斐波那契数列,则并行无法提高性能:
2013-07-18 18:04:39.885 recursiveFibo[35617:303] serial caculating Fibonacci(6)...
2013-07-18 18:04:39.888 recursiveFibo[35617:303] fibonacci(6) = 8, cost 0.000017 seconds
2013-07-18 18:04:39.889 recursiveFibo[35617:303] parallel calculateing Fibonacci(6)...
2013-07-18 18:04:39.890 recursiveFibo[35617:303] fibonacci(6) = 8, cost 0.000246 seconds
如果用循环实现(主程序中调用loopFibo),则无论计算量的大小,并行均不可能提高性能。
对于“大计算量的类斐波那契数列问题”,实验结果是:
2013-07-19 07:20:32.382 loopFibo[37029:303] serial caculating Fibonacci(6)...
2013-07-19 07:20:34.385 loopFibo[37029:303] fibonacci(6) = 8, cost 10.004636 seconds
2013-07-19 07:20:34.386 loopFibo[37029:303] parallel calculateing Fibonacci(6)...
2013-07-19 07:20:38.389 loopFibo[37029:303] fibonacci(6) = 8, cost 10.005218 seconds
对于单纯计算斐波那契数列,实验结果是:
2013-07-19 07:31:59.530 loopFibo[37404:303] serial caculating Fibonacci(6)...
2013-07-19 07:31:59.532 loopFibo[37404:303] fibonacci(6) = 8, cost 0.000013 seconds
2013-07-19 07:31:59.532 loopFibo[37404:303] parallel calculateing Fibonacci(6)...
2013-07-19 07:31:59.533 loopFibo[37404:303] fibonacci(6) = 8, cost 0.000042 seconds
从此文也可以看出,用循环的方式实现斐波那契数列是一种更好的方式。