Azure Machine Learning - 提示工程简介-LMLPHP

提示工程基本概念

本部分介绍 GPT 提示的基本概念和元素。

文本提示是用户与 GPT 模型交互的方式。 与所有生成语言模型一样,GPT 模型会尝试生成最有可能紧跟上一个文本的下一系列字词。 就好像我们在说“当我说 <prompt> 时,你想到的第一件事是什么?”。 以下示例演示了此行为。 给定著名内容的开头,模型能够准确地延续文本。

在开发更复杂的提示时,记住这一基本行为会很有帮助。 无论提供的提示是什么,模型都只是使用它确定的最有可能的情况(基于训练数据和训练目标)做出响应。 如果在提示中提出问题,则模型不会遵循单独的“Q&A”代码路径,而是看起来在回答问题,因为回答即是输入的给定问题最有可能的响应。

提示组件

当使用补全 API 而提示的不同部分之间没有区别时,它对于学习和讨论以识别基础提示组件仍然很有用。 使用[聊天补全 API]时,提示的不同部分以具有关联角色(系统、用户和助手)的字典数组的形式发送到 API。 本指南更笼统地侧重于如何考虑提示构造,而不是提供特定于某个 API 的规范性指导。

同样重要的是要了解,虽然可能存在其他有效的方法来剖析提示,但这种分解的目标是提供一种相对简单的方法来理解提示构造。 使用补全 API 时,所有组件都是可选的,但必须至少有一个组件存在,而大多数提示包含多个组件。 组件之间也可能存在一些灰色区域。 下面显示的顺序大致对应于每个组件的使用方式(从最多到最少)。

Instructions

指令可能是最常用的提示组件。 指令很简单:向模型说明要执行的操作。 虽然概念简单,但它在实践中可能比较复杂。 下表以两种不同形式显示简单和复杂的指令,借此来说明这一点。

主要内容

主要内容是指模型正在处理或转换的某种文本。 主要内容通常与指令一起使用。 一个简单的示例是语言翻译。 在下面的示例中,英语文本被视为主要内容,而“翻译为法语:”是指令。

主要内容也可以更长。 在以下示例中,主要内容是维基百科时间复杂度条目的简介部分,长度近 300 字。 为了便于显示,此内容已在表中缩写。

GPT 模型还可以处理结构化的主要内容。 在下面的示例中,有关比利时啤酒的 TSV(本文中为显示为缩写)作为提示的一部分传递给模型。 它能够正确解释内容并回答有关数据的问题。

示例

成功的提示通常依赖于“单样本”或“少样本”学习。 这是指加入模型所需行为的一个或多个示例,通常做法是加入输入和输出对。 这不是从模型进行永久更改这一意义上学习,而是通过示例更好地使模型能够仅根据当前推理的需求做出响应。 使用没有示例的提示有时称为“零样本”学习。 请注意,使用聊天补全 API 时,在初始系统消息后,少样本学习示例通常以示例用户/助手交互的形式添加到消息数组中。

上面的示例演示了少样本学习的效用。 如果没有这些示例,模型似乎在猜测所需的行为,而示例则清晰地向模型展示了如何操作。 这也演示了模型的强大功能,它可以推断出所需的标签类别,即使示例中没有“篮球”标签。

指示

指示充当模型输出的“快速启动”,帮助将模型定向到所需的输出。 它通常是模型可以作为生成基础的前缀。 在下面的示例中,我们演示了引导故事以包含关键元素的指示。 指示通常与指令一起使用,但并非总是如此。 在下面的示例中,该模型用于汇总长公告电子邮件。 指示在一种情况下用于帮助聚焦模型的输出,在另一种情况下用于建议特定输出格式(项目符号)。

在聊天补全 API 的上下文中,指令采用系统消息的形式,通过提供一系列示例用户/助手交互来指示少样本示例以帮助启动模型。

支持内容

支持内容是模型可用于以某种方式影响输出的信息。 它与主要内容的不同之处在于,它不是任务的主要目标,但它通常与主要内容一起使用。 常见示例包括上下文信息,例如当前日期、用户名、用户偏好等。 以下示例使用支持内容来帮助为用户安排一组计划的研讨会。 如果没有支持(重要主题),模型只会列出研讨会(为显示而截断),当被告知我的重要主题时,模型能够准确地分组会议。

最佳做法

  • 尽量具体。 尽可能少留解读空间。 限制操作空间。
  • 具有描述性。 使用类比。
  • 强调。 有时可能需要对模型进行重复操作。 在主要内容之前和之后提供说明,使用指令和指示等。
  • 给事项排序。 向模型呈现信息的顺序可能会影响输出。 你选择是在内容之前放置指令(“汇总以下内容…”)还是之后(“汇总以上…”)会影响输出。 即使是少样本示例的顺序也很重要。 这被称为“近因偏差”。
  • 给模型一个“出路”。 如果模型无法完成分配的任务,有时为模型提供备用路径可能会有所帮助。 例如,在对一段文本提出问题时,可以加入类似于“如果答案不存在,则回复‘未找到’”之类的内容。这可帮助模型避免生成错误的响应。

空间效率

虽然输入大小会随着 GPT 模型的迭代而增加,但仍存在提供的数据超出模型所能处理的数据量的情况。 GPT 模型将单词分解为“标记”。 常见的多音节单词通常是单个标记,而不太常见的单词会按音节拆分。 标记有时可能违反直觉,如以下示例所示,它演示了不同日期格式的标记边界。 在这种情况下,拼出整个月份比使用完全数字的日期更具空间效益。 当前的标记支持范围:早期 GPT-3 模型支持 2000 个标记,最新的 GPT-4 模型 32k 版本支持最多 32,768 个标记。
Azure Machine Learning - 提示工程简介-LMLPHP
由于空间有限,请务必尽可能高效地使用它。

  • 表格 – 如上一部分中的示例所示,GPT 模型可以非常轻松地理解表格格式的数据。 这是一种空间高效的包含数据的方式,相较于在每个字段前面加上名称(例如 JSON)。
  • 空格 - 连续的空格被视为单独的标记,这很容易浪费空间。 另一方面,单词前面的空格通常被视为与单词相同的标记的一部分。 请仔细观察空格的使用情况,不要在单独使用空格就足够时使用标点符号。

Azure Machine Learning - 提示工程简介-LMLPHP

12-18 07:38