LZ目前正在做一个批量生成报表的系统,需要定时批量生成多张报表,便考虑使用线程池来完成。JDK自带的Executors工具类只提供创建固定线程和可伸展但无上限的两个静态方法,并不能满足LZ想自定制线程池大小的要求。于是就直接深入了解下ThreadPoolExecutor类,以方便在工作中灵活使用以及为以后的扩展打下基础。

java doc中对ThreadPoolExecutor的说明是:

一个使用线程池来执行提交的任务的ExecutorService子类,正常通过Executors工具类中的工厂方法进行配置。

那我们就先看一下比较熟悉的Executors中的几个方法的实现代码:

Executors.newCachedThreadPool

public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
threadFactory);
}

Executors.newFixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);
}

Executors.newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory));
}

可以看到其实这些方法都是通过构造方法创建了ThreadPoolExecutor对象,我们来看下具体的构造方法实现

public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
threadFactory, defaultHandler);
}

这里我们可以看到ThreadPoolExecutor中比较重要的一些参数,这些参数都是可以通过外部传入,对ThreadPoolExecutor内部进行控制。而ThreadPoolExecutor内部的工作机制究竟是怎样进行的呢?下面我们就揭开它的外衣,深入其中仔细探究。

1.ThreadPoolExecutor继承了AbstractExecutorService类

public class ThreadPoolExecutor extends AbstractExecutorService

2. ThreadPoolExecutor的重要变量参数

  • ctl: 用来标识线程池状态的重要参数,很多操作执行前都需要对线程池状态进行前置判断,以确定线程池状态是否正常

  • workQueue: 任务队列,用来在全部当前线程正在处理任务时存储提交来的任务

  • works: 存储所有工作线程

  • corePoolSize: 核心线程数

  • maximumPoolSize: 最大线程数

  • keepAliveTime: 空闲线程等待任务时间

  • threadFactory: 线程创建工厂

  • handler: 因线程池饱和或关闭触发的拒绝异常处理器

      //标识线程池控制状态
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); //线程池状态类型
    //接受新的任务并处理队列中的任务
    private static final int RUNNING= -1 << COUNT_BITS;
    //不接受新任务但处理队列中的任务
    private static final int SHUTDOWN = 0 << COUNT_BITS;
    //不接受新任务也不处理队列中的任务,且中断正在进行的任务
    private static final int STOP = 1 << COUNT_BITS;
    //所有任务已经完结,工作线程数为0,并调用terminated方法
    private static final int TIDYING= 2 << COUNT_BITS;
    //terminated方法执行完成
    private static final int TERMINATED = 3 << COUNT_BITS;
    //任务队列,储存任务以提供给工作线程
    private final BlockingQueue<Runnable> workQueue;
    //主要锁,设置workers和相关数据记录调用
    private final ReentrantLock mainLock = new ReentrantLock();
    //存储所有工作线程,设置时需要加mainLock锁
    private final HashSet<Worker> workers = new HashSet<Worker>();
    //线程池已达到的最大数,设置时需要加mainLock锁
    private int largestPoolSize;
    //已完成任务数,设置时需要加mainLock锁
    private long completedTaskCount;
    //线程创建工厂
    private volatile ThreadFactory threadFactory;
    //因饱和或线程池关闭触发的拒绝异常处理器
    private volatile RejectedExecutionHandler handler;
    //空闲线程等待任务时间(单位:纳秒),到时则会被销毁
    private volatile long keepAliveTime;
    //默认为false,核心线程在空闲时一直存活
    //如果为true,核心线程使用keepAliveTime参数来等待任务
    private volatile boolean allowCoreThreadTimeOut;
    //核心线程数
    private volatile int corePoolSize;
    //最大线程数
    private volatile int maximumPoolSize;
    //默认拒绝异常处理器
    private static final RejectedExecutionHandler defaultHandler =
    new AbortPolicy();

3.execute方法,用户通过该方法提交任务给线程池。

处理任务分四种种情况:

  1. 如果当前工作线程数小于核心线程数,则创建新的线程来处理任务

  2. 如果当前工作线程等于核心线程数,新提交的任务存储到工作队列中

    重新检测线程池状态是否正常,如果不是运行状态,则移除任务,并处理拒绝异常

    如果线程池正常,工作线程数等于0,则增加工作线程

  3. 当工作队列达到最大容量,工作线程数没有达到最大线程数,增加新的工作线程,并处理任务

  4. 当工作线程数达到最大线程数,则使用拒绝异常处理器对任务进行处理

     public void execute(Runnable command) {
    if (command == null)
    throw new NullPointerException(); int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
    if (addWorker(command, true))
    return;
    c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {
    int recheck = ctl.get();
    if (! isRunning(recheck) && remove(command))
    reject(command);
    else if (workerCountOf(recheck) == 0)
    addWorker(null, false);
    }
    else if (!addWorker(command, false))
    reject(command);
    }

4.线程池是怎么增加一个新的线程的呢?

接下来我们来看addWorker方法

  1. 双重for循环检查线程池是否适合增加新的线程

  2. 创建Worker对象并获得mainLock锁

  3. 再次检查状态,防止线程工厂失败或线程池关闭

  4. works增加worker对象,并更新largestPoolSize,释放锁

  5. 启用worker对象中的线程

  6. 由于并发原因,可能会出现线程尚未执行,但线程池正在关闭,因此可能会出现线程池关闭时,错过中断当前线程,因此再进行一次判断,如果线程池状态为关闭且当前线程未被中断,则手动中断它

     private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
    int c = ctl.get();
    int rs = runStateOf(c);
    // Check if queue empty only if necessary.
    if (rs >= SHUTDOWN &&
    ! (rs == SHUTDOWN &&
    firstTask == null &&
    ! workQueue.isEmpty()))
    return false;
    for (;;) {
    int wc = workerCountOf(c);
    if (wc >= CAPACITY ||
    wc >= (core ? corePoolSize : maximumPoolSize))
    return false;
    if (compareAndIncrementWorkerCount(c))
    break retry;
    c = ctl.get(); // Re-read ctl
    if (runStateOf(c) != rs)
    continue retry;
    // else CAS failed due to workerCount change; retry inner loop
    }
    }
    Worker w = new Worker(firstTask);
    Thread t = w.thread;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
    // Recheck while holding lock.
    // Back out on ThreadFactory failure or if
    // shut down before lock acquired.
    int c = ctl.get();
    int rs = runStateOf(c);
    if (t == null ||
    (rs >= SHUTDOWN &&
    ! (rs == SHUTDOWN &&
    firstTask == null))) {
    decrementWorkerCount();
    tryTerminate();
    return false;
    }
    workers.add(w);
    int s = workers.size();
    if (s > largestPoolSize)
    largestPoolSize = s;
    } finally {
    mainLock.unlock();
    }
    t.start();
    // It is possible (but unlikely) for a thread to have been
    // added to workers, but not yet started, during transition to
    // STOP, which could result in a rare missed interrupt,
    // because Thread.interrupt is not guaranteed to have any effect
    // on a non-yet-started Thread (see Thread#interrupt).
    if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
    t.interrupt();
    return true;
    }

5.Worker类的实现

在addWorker方法中,我们并没有看到任务具体执行的操作,但是可以很明显地猜测到应该是在调用t.start()方法时进行调用。而线程t是来自于Worker对象,我们来看下内部类Worker(删除了部分代码)。

  1. Worker类继承自AbstractQueuedSynchronizer,实现了Runnable接口

  2. new Worker()时,通过ThreadFactory的newThread方法创建了一个新的线程

  3. 当调用addWorker中的t.start()时,其实触发的是run方法中的runWorker(this)

     private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
    { /** Thread this worker is running in. Null if factory fails. */
    final Thread thread;
    /** Initial task to run. Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;
    /**
    * Creates with given first task and thread from ThreadFactory.
    * @param firstTask the first task (null if none)
    */
    Worker(Runnable firstTask) {
    setState(-1); // inhibit interrupts until runWorker
    this.firstTask = firstTask;
    this.thread = getThreadFactory().newThread(this);
    }
    /** Delegates main run loop to outer runWorker */
    public void run() {
    runWorker(this);
    }
    }

6.runWorker方法是怎么触发任务执行的

  1. while循环保证了线程可以重复执行任务,如果firstTask执行完成后,通过getTask方法从任务队列中获取新的任务继续执行

  2. 执行前和执行后分别调用beforExecute和afterExecute两个钩子方法,可以用来在子类中自己实现,比如用于线程池监控

  3. 如果处理过程中出现意外情况,在finally中调用processWorkerExit进行处理,主要是对线程记录相关变量进行恢复,且处理当核心线程全部超时而任务队列中有新的任务时,重新增加新线程来处理任务

     final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
    while (task != null || (task = getTask()) != null) {
    w.lock();
    // If pool is stopping, ensure thread is interrupted;
    // if not, ensure thread is not interrupted. This
    // requires a recheck in second case to deal with
    // shutdownNow race while clearing interrupt
    if ((runStateAtLeast(ctl.get(), STOP) ||
    (Thread.interrupted() &&
    runStateAtLeast(ctl.get(), STOP))) &&
    !wt.isInterrupted())
    wt.interrupt();
    try {
    beforeExecute(wt, task);
    Throwable thrown = null;
    try {
    task.run();
    } catch (RuntimeException x) {
    thrown = x; throw x;
    } catch (Error x) {
    thrown = x; throw x;
    } catch (Throwable x) {
    thrown = x; throw new Error(x);
    } finally {
    afterExecute(task, thrown);
    }
    } finally {
    task = null;
    w.completedTasks++;
    w.unlock();
    }
    }
    completedAbruptly = false;
    } finally {
    processWorkerExit(w, completedAbruptly);
    }
    }

7.getTask方法中是怎么获取任务队列中的任务的

  1. 判断线程池状态是否正常,根据timed = allowCoreThreadTimeout || wc > corePoolSize来决定队列获取任务的方式是指定keepAliveTime时间进行等待还是阻塞式等待

  2. 如果keepAliveTime超时,允许核心线程超时销毁或者当前线程池总量大于核心线程数,则getTask()返回null,回溯到runWorker方法中,则while循环结束,即线程执行完成,此线程将被销毁。

     private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?
    retry:
    for (;;) {
    int c = ctl.get();
    int rs = runStateOf(c);
    // Check if queue empty only if necessary.
    if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
    decrementWorkerCount();
    return null;
    }
    boolean timed; // Are workers subject to culling?
    for (;;) {
    int wc = workerCountOf(c);
    timed = allowCoreThreadTimeOut || wc > corePoolSize;
    if (wc <= maximumPoolSize && ! (timedOut && timed))
    break;
    if (compareAndDecrementWorkerCount(c))
    return null;
    c = ctl.get(); // Re-read ctl
    if (runStateOf(c) != rs)
    continue retry;
    // else CAS failed due to workerCount change; retry inner loop
    }
    try {
    Runnable r = timed ?
    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
    workQueue.take();
    if (r != null)
    return r;
    timedOut = true;
    } catch (InterruptedException retry) {
    timedOut = false;
    }
    }
    }
05-11 19:33