这次给大家带来pandas+dataframe实现行列选择与切片操作,pandas+dataframe实现行列选择与切片操作的注意事项有哪些,下面就是实战案例,一起来看一下。
SQL中的select是根据列的名称来选取;Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取。相关函数如下:
1)loc,基于列label,可选取特定行(根据行index);
2)iloc,基于行/列的position;
3)at,根据指定行index及列label,快速定位DataFrame的元素;
4)iat,与at类似,不同的是根据position来定位的;
5)ix,为loc与iloc的混合体,既支持label也支持position;
实例
import pandas as pd import numpy as np df = pd.DataFrame({'total_bill': [16.99, 10.34, 23.68, 23.68, 24.59], 'tip': [1.01, 1.66, 3.50, 3.31, 3.61], 'sex': ['Female', 'Male', 'Male', 'Male', 'Female']}) # data type of columns print df.dtypes # indexes print df.index # return pandas.Index print df.columns # each row, return array[array] print df.values print df
登录后复制
sex object tip float64 total_bill float64 dtype: object RangeIndex(start=0, stop=5, step=1) Index([u'sex', u'tip', u'total_bill'], dtype='object') [['Female' 1.01 16.99] ['Male' 1.66 10.34] ['Male' 3.5 23.68] ['Male' 3.31 23.68] ['Female' 3.61 24.59]] sex tip total_bill 0 Female 1.01 16.99 1 Male 1.66 10.34 2 Male 3.50 23.68 3 Male 3.31 23.68 4 Female 3.61 24.59
登录后复制
print df.loc[1:3, ['total_bill', 'tip']] print df.loc[1:3, 'tip': 'total_bill'] print df.iloc[1:3, [1, 2]] print df.iloc[1:3, 1: 3]
登录后复制
total_bill tip 1 10.34 1.66 2 23.68 3.50 3 23.68 3.31 tip total_bill 1 1.66 10.34 2 3.50 23.68 3 3.31 23.68 tip total_bill 1 1.66 10.34 2 3.50 23.68 tip total_bill 1 1.66 10.34 2 3.50 23.68
登录后复制
错误的表示:
print df.loc[1:3, [2, 3]]#.loc仅支持列名操作
登录后复制
KeyError: 'None of [[2, 3]] are in the [columns]'
登录后复制
print df.loc[[2, 3]]#.loc可以不加列名,则是行选择
登录后复制
sex tip total_bill 2 Male 3.50 23.68 3 Male 3.31 23.68
登录后复制
print df.iloc[1:3]#.iloc可以不加第几列,则是行选择
登录后复制
sex tip total_bill 1 Male 1.66 10.34 2 Male 3.50 23.68
登录后复制
print df.iloc[1:3, 'tip': 'total_bill']
登录后复制
TypeError: cannot do slice indexing on <class 'pandas.indexes.base.Index'> with these indexers [tip] of <type 'str'>
登录后复制
print df.at[3, 'tip'] print df.iat[3, 1] print df.ix[1:3, [1, 2]] print df.ix[1:3, ['total_bill', 'tip']]
登录后复制
3.31 3.31 tip total_bill 1 1.66 10.34 2 3.50 23.68 3 3.31 23.68 total_bill tip 1 10.34 1.66 2 23.68 3.50 3 23.68 3.31
登录后复制
print df.ix[[1, 2]]#行选择
登录后复制
sex tip total_bill 1 Male 1.66 10.34 2 Male 3.50 23.68
登录后复制
print df[1: 3] print df[['total_bill', 'tip']] # print df[1:2, ['total_bill', 'tip']] # TypeError: unhashable type
登录后复制
sex tip total_bill 1 Male 1.66 10.34 2 Male 3.50 23.68 total_bill tip 0 16.99 1.01 1 10.34 1.66 2 23.68 3.50 3 23.68 3.31 4 24.59 3.61
登录后复制
print df[1:3,1:2]
登录后复制
TypeError: unhashable type
登录后复制
相信看了本文案例你已经掌握了方法,更多精彩请关注Work网其它相关文章!
推荐阅读:
以上就是pandas+dataframe实现行列选择与切片操作的详细内容,更多请关注Work网其它相关文章!