\(BSGS\)

求解\(a^x\equiv b\pmod p\),且\(a\)与\(p\)互质

由\(a^{φ(p)}\equiv1 \pmod p\)和\(a^0\equiv 1\pmod p\)得

\(0\simφ(p)\)为一个循环节,所以若在这个范围内不存在\(x\)满足方程,方程就无解

考虑分块,设\(x=im-k\),其中\(0\leqslant k\leqslant m\)

原方程变为\(a^{im-k}\equiv b\pmod p\)

两边同乘\(a^k\),\(a^{im}\equiv {a^kb}\pmod p\)

那么就可以先计算右边\({a^kb}\ mod\ p\)的值,放入一个\(hash\)表中,再计算左边\(a^{im}\ mod\ p\)的值,从小到大枚举所有可能的\(i\)值,再在\(hash\)表查询

当\(m\)取\(\sqrt p\)时复杂度最小,为\(O(\sqrt p)\)

同时注意\(m\)需要取\(\sqrt p+1\)或是\(ceil(\sqrt p)\)

\(code:\)

ll qp(ll x,ll y,ll m)
{
ll ans=1;
while(y)
{
if(y&1) ans=(ans*x)%m;
x=(x*x)%m;
y>>=1;
}
return ans%m;
}
map<ll,int> ha;
ll bsgs(ll a,ll b,ll p)
{
ll m=ceil(sqrt(p));
for(ll i=0,t=b;i<=m;++i,t=t*a%p) ha[t]=i;
for(ll i=1,tmp=qp(a,m,p),t=tmp;i<=m;++i,t=t*tmp%p)
if(ha[t])
return i*m-ha[t];
return -1;
}

\(exBSGS\)

求解\(a^x\equiv b\pmod p\),不保证\(a\)与\(p\)互质

设\(g=gcd(a,p)\)

带入得\(a^{x-1}\frac{a}{g}\equiv \frac{b}{g}\ (mod\ \frac{p}{g})\)

化简得\(a^{x-1}\equiv \frac{b}{g}×inv(\frac{a}{g})\ (mod\ \frac{p}{g})\)

像这样一直变换下去,当\(a\)与\(\frac{p}{g}\)互质时,即可求解

在变换过程中,当发现\(g\nmid b\)且\(b\ne 1\)时,原方程无解

当\(b=mul\)时说明此时\(a\)的次数为\(0\),这时返回变换次数\(cnt\)

\(code:\)

ll exgcd(ll a,ll b)
{
if(!b)
{
x=1,y=0;
return a;
}
ll ans=exgcd(b,a%b),tmp=x;
x=y,y=tmp-a/b*y;
return ans;
}
ll qp(ll x,ll y,ll m)
{
ll ans=1;
while(y)
{
if(y&1) ans=(ans*x)%m;
x=(x*x)%m;
y>>=1;
}
return ans%m;
}
ll inv(ll a,ll p)
{
exgcd(a,p);
return (x%p+p)%p;
}
unordered_map<ll,int> ha;
ll bsgs(ll a,ll b,ll p)
{
ha.clear();
ll m=ceil(sqrt(p));
for(ll i=0,t=b;i<=m;++i,t=t*a%p) ha[t]=i;
for(ll i=1,tmp=qp(a,m,p),t=tmp;i<=m;++i,t=t*tmp%p)
if(ha[t])
return i*m-ha[t];
return -1;
}
ll exbsgs(ll a,ll b,ll p)
{
if(b==1||p==1) return 0;
ll g,cnt=0,mul=1;
while((g=exgcd(a,p))!=1)
{
if(b%g!=0) return -1;
cnt++,b/=g,p/=g,mul=mul*(a/g)%p;
if(b==mul) return cnt;
}
ll ans=bsgs(a,b*inv(mul,p)%p,p);
if(~ans) return ans+cnt;
return -1;
}
05-26 18:09