Travelling Tours
Time limit: 1.0 second
Memory limit: 64 MB
Memory limit: 64 MB
There are N cities numbered from 1 to N (1 ≤ N ≤ 200)
and M two-way roads connect them. There are at most one road
between two cities. In summer holiday, members of DSAP Group want to
make some traveling tours. Each tour is a route passes K different cities (K > 2) T, T, …, T
and return to T. Your task is to help them make T tours such that:
and M two-way roads connect them. There are at most one road
between two cities. In summer holiday, members of DSAP Group want to
make some traveling tours. Each tour is a route passes K different cities (K > 2) T, T, …, T
and return to T. Your task is to help them make T tours such that:
- Each of these T tours has at least a road that does not belong to (T−1) other tours.
- T is maximum.
Input
The first line of input contains N and M separated with white spaces. Then follow by M lines, each has two number H and T which means there is a road connect city H and city T.
Output
You must output an integer number T — the maximum number of tours. If T > 0, then T lines followed, each describe a tour. The first number of each line is K — the amount of different cities in the tour, then K numbers which represent K cities in the tour.
If there are more than one solution, you can output any of them.
Sample
input | output |
---|---|
5 7 | 3 |
Problem Author: Nguyen Xuan My (Converted by Dinh Quang Hiep and Tran Nam Trung)
【分析】给你一张无向图,问你图中最多存在多少个环。用并查集来做,每次输入一条边,如果两个顶点不在同一集合中,就把他俩合为一个集合中,如果已经在一个集合中了,说明只要加上这条边,就会形成一个环,然后就BFS找就行了,用pre数组记录路径。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int n,m,k,l,tot=;
int parent[N],pre[N],vis[N];
vector<int>vec[N],ans[N*N];
int Find(int x){
if(parent[x]!=x)parent[x]=Find(parent[x]);
return parent[x];
}
void Union(int x,int y){
x=Find(x);y=Find(y);
if(x==y)return;
else parent[y]=x;
}
void bfs(int s,int t){
met(vis,);met(pre,);
queue<int>q;
q.push(s);vis[s]=;
while(!q.empty()){
int u=q.front();q.pop();
if(u==t)return;
for(int i=;i<vec[u].size();i++){
int v=vec[u][i];
if(!vis[v]){
pre[v]=u;vis[v]=;
q.push(v);
}
}
}
}
int main() {
int u,v;
for(int i=;i<N;i++)parent[i]=i;
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d",&u,&v);
int x=Find(u);int y=Find(v);
if(x==y){
bfs(u,v);
ans[++tot].push_back(v);
while(pre[v]){
ans[tot].pb(pre[v]);
v=pre[v];
}
}else{
vec[u].pb(v);vec[v].pb(u);
Union(u,v);
}
}
printf("%d\n",tot);
for(int i=;i<=tot;i++){
printf("%d",ans[i].size());
for(int j=;j<ans[i].size();j++){
printf(" %d",ans[i][j]);
}printf("\n");
}
return ;
}