算法复杂度是指算法在编写成可执行程序后,运行时所需要的资源,资源包括时间资源和内存资源。应用于数学和计算机导论。

算法的时间复杂度和空间复杂度-LMLPHP

算法时间复杂度的定义:(推荐学习:PHP视频教程

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。

按数量级递增排列,常见的时间复杂度有:

常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),

线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,

k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

算法空间复杂度

与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。

记作:

S(n)=O(f(n))

算法执行期间所需要的存储空间包括3个部分:

算法程序所占的空间;

输入的初始数据所占的存储空间;

算法执行过程中所需要的额外空间。

在许多实际问题中,为了减少算法所占的存储空间,通常采用压缩存储技术。

更多PHP相关技术文章,请访问PHP图文教程栏目进行学习

以上就是算法的时间复杂度和空间复杂度的详细内容,更多请关注Work网其它相关文章!

08-27 17:49