Redis的事件循环在一个线程中处理,作为一个单线程程序,重要的是要保证事件处理的时延短,这样,事件循环中的后续任务才不会阻塞; 当redis的数据量达到一定级别后(比如20G),阻塞操作对性能的影响尤为严重;

redis阻塞怎么办-LMLPHP

下面我们总结下在redis中有哪些耗时的场景及应对方法;

耗时长的命令造成阻塞

keys、sort等命令

keys命令用于查找所有符合给定模式 pattern 的 key,时间复杂度为O(N), N 为数据库中 key 的数量。当数据库中的个数达到千万时,这个命令会造成读写线程阻塞数秒; 类似的命令有sunion sort等操作; 如果业务需求中一定要使用keys、sort等操作怎么办?

解决方案:

在架构设计中,有“分流”一招,说的是将处理快的请求和处理慢的请求分离来开,否则,慢的影响到了快的,让快的也快不起来;这在redis的设计中体现的非常明显,redis的纯内存操作,epoll非阻塞IO事件处理,这些快的放在一个线程中搞定,而持久化,AOF重写、Master-slave同步数据这些耗时的操作就单开一个进程来处理,不要慢的影响到快的; 同样,既然需要使用keys这些耗时的操作,那么我们就将它们剥离出去,比如单开一个redis slave结点,专门用于keys、sort等耗时的操作,这些查询一般不会是线上的实时业务,查询慢点就慢点,主要是能完成任务,而对于线上的耗时快的任务没有影响;

smembers命令

smembers命令用于获取集合全集,时间复杂度为O(N),N为集合中的数量; 如果一个集合中保存了千万量级的数据,一次取回也会造成事件处理线程的长时间阻塞;

解决方案:

和sort,keys等命令不一样,smembers可能是线上实时应用场景中使用频率非常高的一个命令,这里分流一招并不适合,我们更多的需要从设计层面来考虑; 在设计时,我们可以控制集合的数量,将集合数一般保持在500个以内; 比如原来使用一个键来存储一年的记录,数据量大,我们可以使用12个键来分别保存12个月的记录,或者365个键来保存每一天的记录,将集合的规模控制在可接受的范围;

如果不容易将集合划分为多个子集合,而坚持用一个大集合来存储,那么在取集合的时候可以考虑使用SRANDMEMBER key [count];随机返回集合中的指定数量,当然,如果要遍历集合中的所有元素,这个命令就不适合了;

以上就是redis阻塞怎么办的详细内容,更多请关注Work网其它相关文章!

08-30 08:09