前言

嗨嗨嗨,这里是盖子的小课堂哟,这次更新主要是因为快放假了,时间多了,好嘞,废话不多说,点赞评论拿来吧你~

差分数组

一维差分数组

假设给你一个数组 nums ,先对区间 [a,b] 中每个元素加 3 ,在对区间 [c,d] 每个元素减 5 …… ,这样非常频繁的区间修改,常规的做法可以一个个计算。

public void increment(int[] nums, int a, int b, int k) {
     for (int index = a; index <= b; index++) {
         nums[index] += k;
     }
 }

频繁对数组的一段区间进行增加或减去同一个值,如果一个个去操作,很明显效率很差,我们可以使用差分数组,差分数组就是原始数组相邻元素之间的差。定义差分数组 d[n] ,我们可以得到: d[i] = nums[i] − nums[i−1] ,其中 d[0] = nums[0] ,如下图所示。盖子的c++小课堂——第二十四讲:差分数组-LMLPHP

 我们可以看到原数组就是差分数组的前缀和。

nums[0] = d[0]
 num[3] = d[0] + d[1] + d[2] + d[3]

有了差分数组,如果对区间 [a,b] 每个元素加 3 ,不需要在一个个操作,只需要在两端修改即可,如下图所示。

d[a] += 3;
 d[b+1] -= 3;

盖子的c++小课堂——第二十四讲:差分数组-LMLPHP

 来看下代码:

public class DiffNums {​
     private int[] diff;// 差分数组。
     private int[] nums;// 原数组。​
     public DiffNums(int[] nums) {
         this.nums = nums;
         diff = new int[nums.length];
         diff[0] = nums[0];
         for (int i = 1; i < diff.length; i++)
             diff[i] = nums[i] - nums[i - 1];
     }​
     // 给区间[a,b]每个元素增加val(也可为负数)。
     public void increment(int a, int b, int val) {
         diff[a] += val;
         if (b + 1 < diff.length)
             diff[b + 1] -= val;
     }​
     // 返回结果数组。
     public int[] result() {
         nums[0] = diff[0];
         for (int i = 1; i < diff.length; i++)
             nums[i] = diff[i] + nums[i - 1];
         return nums;
     }
 }

二维差分数组

我们把一维差分数组看做是一条直线,只需要用后面的值减去前面的值就可以构造差分数组。而二维差分数可以把他看做是一个平面,如下图所示,他的定义如下:

d[i][j] = a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1]

盖子的c++小课堂——第二十四讲:差分数组-LMLPHP

 ​如果想获取原数组,根据上面的公式可以得到:

a[i][j] = a[i-1][j]+a[i][j-1]-a[i-1][j-1]+d[i][j]

如下图所示,以 (x1,y1) 为左上角, (x2,y2) 为右下角构成一个区间,如果对这个区间内的每个元素增加 val ,只需要执行下面四步即可。

public void add(int x1, int y1, int x2, int y2, int val) {
     d[x1][y1] += val;// 增加S1
     d[x1][y2 + 1] -= val;// 减去S2
     d[x2 + 1][y1] -= val;// 减去S3
     d[x2 + 1][y2 + 1] += val;//加上S4
 }

盖子的c++小课堂——第二十四讲:差分数组-LMLPHP

 代码如下:

private int[][] d;// 差分数组。
 private int[][] a;// 原数组。​
 public TwoDiffNums(int[][] a) {
     this.a = a;
     int m = a.length;
     int n = a[0].length;
     d = new int[m][n];
     // 求差分数组。
     for (int i = 0; i < m; i++)
         for (int j = 0; j < n; j++)
             add(i, j, i, j, a[i][j]);
 }​
 public void add(int x1, int y1, int x2, int y2, int val) {
     d[x1][y1] += val;
     if (y2 + 1 < d[0].length)
         d[x1][y2 + 1] -= val;
     if (x2 + 1 < d.length)
         d[x2 + 1][y1] -= val;
     if (x2 + 1 < d.length && y2 + 1 < d[0].length)
         d[x2 + 1][y2 + 1] += val;
 }​
 // 返回结果数组。
 public int[][] result() {
     for (int i = 0; i < a.length; i++) {
         for (int j = 0; j < a[0].length; j++) {
             int x1 = i > 0 ? a[i - 1][j] : 0;
             int x2 = j > 0 ? a[i][j - 1] : 0;
             int x3 = i > 0 && j > 0 ? a[i - 1][j - 1] : 0;
             a[i][j] = x1 + x2 - x3 + d[i][j];
         }
     }
     return a;
 }

差分数组是与前缀和数组所对应的一种逆操作,类似于求导和积分,也就是说,对差分数组求前缀和,可以得到原数组,同样的,对前缀和数组求差分,也可以得到原数组。

差分数组的性质

 

当我们希望对原数组的某一个区间[l,r]施加一个增量inc时,差分数组d对应的变化是:d[l]增加inc,d[r+1]减少inc,并且这种操作是可以叠加的。

例如:有数组d=[1,2,3,4,5,6],对d[2]到d[4]之间的所有数加上3,变为d=[1,2,6,7,8,6],那么差分数组也就从[1,1,1,1,1,1]变成了[1,1,4,1,1,-2]。

也就是说,当我们需要对原数组的不同区间施加不同的增量,我们只要按规则修改差分数组即可。

总结

今天暂时先到这里,下次更新~拜拜

01-11 05:24