Valley: Video Assistant with Large Language model Enhanced abilitY
大家好,我是卷了又没卷,薛定谔的卷的AI算法工程师「陈城南」~ 担任某大厂的算法工程师,带来最新的前沿AI知识和工具,包括AI相关技术、ChatGPT、AI绘图等, 欢迎大家交流~。
近期基于LLaMA微调的模型有很多,Alpaca,Vicuna都是基于ChatGPT等数据进行文本场景指令微调,LLaVA也使用图文对数据进行了图文场景多模态能力的扩展(这几个模型往期文章都有涉及,不清楚/感兴趣的可以看)。
而本文提到的Valley则是字节发布的视频场景多模态指令微调LLaMA模型。
其中这几个指令微调版本的模型都大差不差,主要还是数据与训练的差异。本文描述Valley当然对标的是其类似模型LLaVA,原文introduction部分翻译修改后如下:
结合论文内容,我对Valley的贡献作了概括:
- 模型:基于LLaVA的方法,添加了时空池化模块应对视频(多帧)场景,将LLaVA从单图扩展为多图(动态长度),同时将LLaVA的Vicuna语言模型换为Stable-Vicuna模型。;
- 数据:搞了多模态的instruction-following数据集,聚焦于视频理解、比较多样的任务(包括multi-short captions,带时间戳的时间性描述、长视频的复杂陈述。同时使用了ChatGPT生成对话人和视频内容的对话,进一步增强数据集的质量和多样性。
- 开源:LLM时代,开源也是贡献~
Related Work
感兴趣的可以通过 相关工作来了解一下LLM的现状,以下为部分机翻:
方法部分
网络结构
在LLaVA(如上图)基础上进行了扩展,将其单图扩展为多图(视频),如下图:
多帧的处理通过时空池化模块,具体:
- 有T个图,每个图的特征为 Vcls + 256 个patch token;
- 在patch token上做时间维度的平均,即T个图平均,则剩余特征为 T个Vcls + 256个平均后的patch token,下图为patch token的平均;
- 因为patch token的时间平均会损失时间信息(保留空间信息),所以将Vcls token 拼接在patch token后面,最终得到 T+256个视觉Token的输入,下图的V平均就是patch token;
空间tokens:256 patch(平均),时序tokens:T个CLS Token;这两个Token最终会经过映射层(Projection)与Text tokens衔接在一起送给大模型;
指令微调数据收集
作者基于MSRVTT(10k)、VATEX(22k)、AativityNet(10k)、VIOLIN(5.8k)共多个数据集构建了视频中心多模态指令数据,包含3种上下文类型,这些对应的问答对生成通过stable-vicuna生成,如下图
参考LLaVA和VideoChat中生成Prompt的方式,作者也用了上面的3种上下文文本和Stable-Vicuna生成了指令微调数据,如下图。累积42k对话和5.8k的问答对,其中对话数据涵盖基础视频内容描述(目标信息等)、时间内容理解。问答数据包含因果推理、字符识别和视频复杂内容理解。
训练
同LLaVA类似的两阶段训练方式,第一阶段通过预训练映射层来进行特征对齐;第二阶段再微调语言模型和映射层;
映射层预训练
使用图文对、视频文本对两种数据进行预训练,其中图文对为LLaVA的595k CC3M数据,视频文本对为参考LLaVA过滤方法进行过滤的 702K WebVid2M 数据。两种类型数据的Prompt组织方式一致,均为:
如果输入单个图像,则帧数为1。图像-文本对和视频-文本对构建为单轮对话,使用各种问题询问视频内容,并使用相应的标题进行回答。
微调
不止上面提到的42k对话和5.8k的问答对,为了增强对视觉内容的强调,还从LLaVA中收集了150k的图片指令数据、以及VideoChat收集的11k视频指令。
实验部分
没有什么指标,给了几个case大家感受下性能就行
Limitation
加入音频信息,构建 音、画、文三种模态可感知的多模态模型;
提供中文感知能力,构建更多的中文多模态数据来增强模型;
存在LLM固有的幻觉问题(hallucination problem)需要解决。幻觉问题指大模型的输出是错误的、无意义的、输出与输入是明显不符合的(比如在摘要生成任务上)等情况,详细可参考:
- GPT-4的“hallucination”(幻觉)相关对策
- 对话大模型中的事实错误:ChatGPT 的缺陷文本任务_问题
- Survey of Hallucination in Natural Language Generation arXiv:2202.03629v5