1. 四阶单位张量

考虑向量函数 f ( v ) = v \bm{f}(\bm{v})=\bm{v} f(v)=v,则
f ′ ( v ) [ u ] = lim ⁡ h → 0 f ( v + h u ) − f ( v ) h = u = I ⋅ u = u ⋅ I \bm{f}'(\bm{v})[\bm{u}]=\lim_{h\rightarrow0}\dfrac{\bm{f}(\bm{v}+h\bm{u})-\bm{f}(\bm{v})}{h}=\bm{u}=\mathbf{I}\cdot\bm{u}=\bm{u}\cdot\mathbf{I} f(v)[u]=h0limhf(v+hu)f(v)=u=Iu=uI故可将二阶单位张量视为:
d v d v L = d v d v R = I = g k ⊗ g k = g k ⊗ g k {\dfrac{d\bm{v}}{d\bm{v}}}_{L}={\dfrac{d\bm{v}}{d\bm{v}}}_{R}=\mathbf{I}=\bm{g}^k\otimes\bm{g}_k=\bm{g}_k\otimes\bm{g}^k dvdvL=dvdvR=I=gkgk=gkgk类比考虑四阶单位张量的定义,对二阶张量函数 F ( A ) = A \mathbf{F}(\mathbf{A})=\mathbf{A} F(A)=A,则
F ′ ( A ) [ B ] = lim ⁡ h → 0 F ( A + h B ) − F ( A ) h = B = B i j g i ⊗ g j = B i j δ k i δ l j g k ⊗ g l = ( B i j g i ⊗ g j ) : ( g k ⊗ g l ⊗ g k ⊗ g l ) = B : ( g k ⊗ g l ⊗ g k ⊗ g l ) = ( g k ⊗ g l ⊗ g k ⊗ g l ) : ( B i j g i ⊗ g j ) = ( g k ⊗ g l ⊗ g k ⊗ g l ) : B \begin{align*} \mathbf{F}'(\mathbf{A})[\mathbf{B}] &=\lim_{h\rightarrow0}\dfrac{\mathbf{F}(\mathbf{A}+h\mathbf{B})-\mathbf{F}(\mathbf{A})}{h}\\[4mm] &=\mathbf{B} =B_{ij}\bm{g}^i\otimes\bm{g}^j =B_{ij}\delta_{k}^i\delta^j_{l}\bm{g}^k\otimes\bm{g}^l\\[2mm] &=(B_{ij}\bm{g}^i\otimes\bm{g}^j):(\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l) =\mathbf{B}:(\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l)\\[2mm] &=(\bm{g}^k\otimes\bm{g}^l\otimes\bm g_{k}\otimes\bm{g}_l):(B_{ij}\bm{g}^i\otimes\bm{g}^j) =(\bm{g}^k\otimes\bm{g}^l\otimes\bm g_{k}\otimes\bm{g}_l):\mathbf{B} \end{align*} F(A)[B]=h0limhF(A+hB)F(A)=B=Bijgigj=Bijδkiδljgkgl=(Bijgigj):(gkglgkgl)=B:(gkglgkgl)=(gkglgkgl):(Bijgigj)=(gkglgkgl):B
g k ⊗ g l ⊗ g k ⊗ g l = g k m g l n g k p g l q   g m ⊗ g n ⊗ g p ⊗ g q = δ m p δ n q   g m ⊗ g n ⊗ g p ⊗ g q = g m ⊗ g n ⊗ g m ⊗ g n = g k ⊗ g l ⊗ g k ⊗ g l g k ⊗ g l ⊗ g k ⊗ g l = g k m g k n   g m ⊗ g l ⊗ g n ⊗ g l = δ m n   g m ⊗ g l ⊗ g n ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l g k ⊗ g l ⊗ g k ⊗ g l = g l m g l n   g k ⊗ g m ⊗ g k ⊗ g n = δ m n   g k ⊗ g m ⊗ g k ⊗ g n = g k ⊗ g l ⊗ g k ⊗ g l \begin{align*} \bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l &=g_{km}g_{ln}g^{kp}g^{lq}~\bm{g}^m\otimes\bm{g}^n\otimes\bm g_{p}\otimes\bm{g}_q\\[2mm] &=\delta^p_m\delta^q_n~\bm{g}^m\otimes\bm{g}^n\otimes\bm g_{p}\otimes\bm{g}_q\\[2mm] &=\bm{g}^m\otimes\bm{g}^n\otimes\bm g_{m}\otimes\bm{g}_n =\bm{g}^k\otimes\bm{g}^l\otimes\bm g_{k}\otimes\bm{g}_l\\[2mm] \bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l &=g_{km}g^{kn}~\bm{g}^m\otimes\bm{g}_l\otimes\bm g_{n}\otimes\bm{g}^l\\[2mm] &=\delta_m^{n}~\bm{g}^m\otimes\bm{g}_l\otimes\bm g_{n}\otimes\bm{g}^l =\bm{g}^k\otimes\bm{g}_l\otimes\bm g_{k}\otimes\bm{g}^l\\[2mm] \bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l &=g_{lm}g^{ln}~\bm{g}_{k}\otimes\bm{g}^{m}\otimes\bm g^{k}\otimes\bm{g}_n\\[2mm] &=\delta_m^{n}~\bm{g}_{k}\otimes\bm{g}^{m}\otimes\bm g^{k}\otimes\bm{g}_n =\bm{g}_{k}\otimes\bm{g}^{l}\otimes\bm g^{k}\otimes\bm{g}_l\\[2mm] \end{align*} gkglgkglgkglgkglgkglgkgl=gkmglngkpglq gmgngpgq=δmpδnq gmgngpgq=gmgngmgn=gkglgkgl=gkmgkn gmglgngl=δmn gmglgngl=gkglgkgl=glmgln gkgmgkgn=δmn gkgmgkgn=gkglgkgl故定义四阶单位张量( 1 − 3 , 2 − 4 1-3,2-4 13,24 指标为哑指标)
I ≜ d A d A L = d A d A R = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l \begin{align} \mathbb{I}\triangleq {\dfrac{d\mathbf{A}}{d\mathbf{A}}}_{L}={\dfrac{d\mathbf{A}}{d\mathbf{A}}}_{R} &=\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l =\bm{g}^k\otimes\bm{g}^l\otimes\bm g_{k}\otimes\bm{g}_l\notag\\[4mm] &=\bm{g}_{k}\otimes\bm{g}^{l}\otimes\bm g^{k}\otimes\bm{g}_l =\bm{g}^k\otimes\bm{g}_l\otimes\bm g_{k}\otimes\bm{g}^l \end{align} IdAdAL=dAdAR=gkglgkgl=gkglgkgl=gkglgkgl=gkglgkgl显然,四阶单位张量不等于度量张量的并矢( 1 − 2 , 3 − 4 1-2,3-4 12,34 指标为哑指标),即
I ≠ I ⊗ I = g k ⊗ g k ⊗ g l ⊗ g l = ⋯ \begin{equation} \mathbb{I}\ne\mathbf{I}\otimes\mathbf{I}=\bm{g}_k\otimes\bm{g}^k\otimes\bm{g}_l\otimes\bm{g}^l =\cdots \end{equation} I=II=gkgkglgl=从四阶张量的引出过程可知四阶单位张量与任意仿射量间满足:
I : B = B : I = B ( ∀   B ∈ T 2 ) \begin{equation} \mathbb{I}:\mathbf{B}=\mathbf{B}:\mathbb{I}=\mathbf{B}\qquad(\forall~\mathbf{B}\in\mathscr{T}^2) \end{equation} I:B=B:I=B( BT2)四阶单位张量与其它四阶张量间满足:
{ I : A = ( g k ⊗ g l ⊗ g k ⊗ g l ) : ( A m n p q g m ⊗ g n ⊗ g p ⊗ g q ) = A A : I = ( A m n p q g m ⊗ g n ⊗ g p ⊗ g q ) : ( g k ⊗ g l ⊗ g k ⊗ g l ) = A ( ∀   A ∈ T 4 ) \begin{equation} \begin{cases} \mathbb{I}:\mathbb{A} =(\bm g^{k}\otimes\bm{g}^l\otimes\bm{g}_k\otimes\bm{g}_l):(A_{mnpq}\bm g^{m}\otimes\bm{g}^n\otimes\bm{g}^p\otimes\bm{g}^q) =\mathbb{A}\\[4mm] \mathbb{A}:\mathbb{I} =(A_{mnpq}\bm g^{m}\otimes\bm{g}^n\otimes\bm{g}^p\otimes\bm{g}^q):(\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l) =\mathbb{A}\qquad(\forall~\mathbb{A}\in\mathscr{T}^4) \end{cases} \end{equation} I:A=(gkglgkgl):(Amnpqgmgngpgq)=AA:I=(Amnpqgmgngpgq):(gkglgkgl)=A( AT4)

2. 由四阶单位张量导出的其它特殊的四阶张量

2.1 四阶单位张量的转置

对四阶单位张量 I = g k ⊗ g l ⊗ g k ⊗ g l \mathbb{I}=\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l I=gkglgkgl 进行转置得到结果:
{ 交换  1 − 4  或  2 − 3  指标: I ⊗ I = g l ⊗ g l ⊗ g k ⊗ g k = g k ⊗ g k ⊗ g l ⊗ g l 交换  1 − 3  或  2 − 4  指标: I = g k ⊗ g l ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g k ⊗ g l 交换  1 − 2  或  3 − 4  指标: g l ⊗ g k ⊗ g k ⊗ g l = g k ⊗ g l ⊗ g l ⊗ g k \begin{cases} \text{交换 $1-4$ 或 $2-3$ 指标:} & \mathbf{I}\otimes\mathbf{I} =\bm g^{l}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}_k =\bm g_{k}\otimes\bm{g}^k\otimes\bm{g}_l\otimes\bm{g}^l \\[3mm] \text{交换 $1-3$ 或 $2-4$ 指标:} & \mathbb{I} =\bm{g}^k\otimes\bm{g}_l\otimes\bm g_{k}\otimes\bm{g}^l =\bm{g}_{k}\otimes\bm{g}^{l}\otimes\bm g^{k}\otimes\bm{g}_l \\[3mm] \text{交换 $1-2$ 或 $3-4$ 指标:} & \bm{g}_l\otimes\bm{g}_k\otimes\bm g^{k}\otimes\bm{g}^l =\bm{g}_{k}\otimes\bm{g}_{l}\otimes\bm g^{l}\otimes\bm{g}^k \end{cases} 交换 1 2指标:交换 1 2指标:交换 1 3指标:II=glglgkgk=gkgkglglI=gkglgkgl=gkglgkglglgkgkgl=gkglglgk将上述结果中除 I ⊗ I \mathbf{I}\otimes\mathbf{I} II I \mathbb{I} I 外的结果称作四阶单位张量的转置( 1 − 4 , 2 − 3 1-4,2-3 14,23 指标为哑指标),记为
I T = g l ⊗ g k ⊗ g k ⊗ g l = g l ⊗ g k ⊗ g k ⊗ g l = g l ⊗ g k ⊗ g k ⊗ g l = g l ⊗ g k ⊗ g k ⊗ g l \begin{align} \mathbb{I}^T&=\bm{g}_l\otimes\bm{g}_k\otimes\bm g^{k}\otimes\bm{g}^l =\bm{g}^l\otimes\bm{g}_k\otimes\bm g^{k}\otimes\bm{g}_l\notag \\[3mm] &=\bm{g}_l\otimes\bm{g}^k\otimes\bm g_{k}\otimes\bm{g}^l =\bm{g}^l\otimes\bm{g}^k\otimes\bm g_{k}\otimes\bm{g}_l \end{align} IT=glgkgkgl=glgkgkgl=glgkgkgl=glgkgkgl上述定义意味着:未特别声明时,四阶单位张量的转置是针对 1 − 2 1-2 12指标进行。 注意到,四阶单位张量的转置满足如下性质:
{ I T : B = ( g l ⊗ g k ⊗ g k ⊗ g l ) : ( B m n g m ⊗ g n ) = B m n g n ⊗ g m = B T B : I T = ( B m n g m ⊗ g n ) : ( g l ⊗ g k ⊗ g k ⊗ g l ) = B m n g n ⊗ g m = B T \begin{equation} \begin{cases} \mathbb{I}^T:\mathbf{B} =(\bm{g}_l\otimes\bm{g}_k\otimes\bm g^{k}\otimes\bm{g}^l ):(B^{mn}\bm{g}_m\otimes\bm{g}_n) =B^{mn}\bm{g}_n\otimes\bm{g}_m =\mathbf{B}^T \\[4mm] \mathbf{B}:\mathbb{I}^T =(B_{mn}\bm{g}^m\otimes\bm{g}^n):(\bm{g}_l\otimes\bm{g}_k\otimes\bm g^{k}\otimes\bm{g}^l ) =B_{mn}\bm{g}^n\otimes\bm{g}^m =\mathbf{B}^T \end{cases} \end{equation} IT:B=(glgkgkgl):(Bmngmgn)=Bmngngm=BTB:IT=(Bmngmgn):(glgkgkgl)=Bmngngm=BT易知: I T \mathbb{I}^T IT与任意四阶张量双点积的结果等于四阶张量对参与双点积的指标进行转置,因为
{ I T : A = A i j k l ( I T : g i ⊗ g j ) ⊗ g k ⊗ g l = A i j k l g j ⊗ g i ⊗ g k ⊗ g l A : I T = A i j k l g i ⊗ g j ( ⊗ g k ⊗ g l : I T ) = A i j k l g i ⊗ g j ⊗ g l ⊗ g k \begin{cases} \mathbb{I}^T:\mathbf{A}=A_{ijkl}(\mathbb{I}^T:\bm{g}^i\otimes\bm{g}^j)\otimes\bm{g}^k\otimes\bm{g}^l =A_{ijkl}\bm{g}^j\otimes\bm{g}^i\otimes\bm{g}^k\otimes\bm{g}^l\\[4mm] \mathbf{A}:\mathbb{I}^T=A_{ijkl}\bm{g}^i\otimes\bm{g}^j(\otimes\bm{g}^k\otimes\bm{g}^l:\mathbb{I}^T) =A_{ijkl}\bm{g}^i\otimes\bm{g}^j\otimes\bm{g}^l\otimes\bm{g}^k \end{cases} IT:A=Aijkl(IT:gigj)gkgl=AijklgjgigkglA:IT=Aijklgigj(gkgl:IT)=Aijklgigjglgk
I T : I T = I \mathbb{I}^T:\mathbb{I}^T=\mathbb{I} IT:IT=I

2.2 对称的四阶单位张量

将四阶单位张量关于 1 − 2 1-2 12指标对称化,则可得到对称的四阶单位张量
I 4 s ≜ 1 2 ( I + I T ) = 1 2 ( g k ⊗ g l ⊗ g k ⊗ g l + g l ⊗ g k ⊗ g k ⊗ g l ) = 1 2 ( δ k i δ l j + δ k j δ l i ) g i ⊗ g j ⊗ g k ⊗ g l \begin{align} \stackrel{4s}{\mathbb I}\triangleq\dfrac{1}{2}(\mathbb{I}+\mathbb{I}^T) &=\dfrac{1}{2}(\bm g_{k}\otimes\bm{g}_l\otimes\bm{g}^k\otimes\bm{g}^l+\bm g_{l}\otimes\bm{g}_k\otimes\bm{g}^k\otimes\bm{g}^l)\notag\\[4mm] &=\dfrac{1}{2}(\delta^i_{k}\delta^j_{l}+\delta^j_{k}\delta^i_{l})\bm g_{i}\otimes\bm{g}_j\otimes\bm{g}^k\otimes\bm{g}^l \end{align} I4s21(I+IT)=21(gkglgkgl+glgkgkgl)=21(δkiδlj+δkjδli)gigjgkgl显然,对称的四阶单位张量满足 Vogit 对称性:
I 4 s i j k l = I 4 s k l i j , I 4 s i j k l = I 4 s j i k l = I 4 s i j l k \begin{equation} \stackrel{4s}{\mathbb I}_{ijkl}=\stackrel{4s}{\mathbb I}_{klij}, \quad \stackrel{4s}{\mathbb I}_{ijkl}=\stackrel{4s}{\mathbb I}_{jikl}=\stackrel{4s}{\mathbb I}_{ijlk} \end{equation} I4sijkl=I4sklij,I4sijkl=I4sjikl=I4sijlk易知: I 4 s \stackrel{4s}{\mathbb I} I4s与任意四阶张量双点积的结果等于四阶张量对参与双点积的指标进行对称化。则
I 4 s : I 4 s = I 4 s \stackrel{4s}{\mathbb I}:\stackrel{4s}{\mathbb I}=\stackrel{4s}{\mathbb I} I4s:I4s=I4s

2.3 四阶投影张量

通常,对任意对称仿射量 B \mathbf{B} B ,我们会对它进行如下分解:
B = 1 3 t r ( B ) I + d e v   B = 1 3 B : ( I ⊗ I ) + d e v   B   ⟹   d e v   B = B : ( I 4 s − 1 3 ( I ⊗ I ) ) = ( I 4 s − 1 3 ( I ⊗ I ) ) : B \begin{align*} & \mathbf{B}=\dfrac{1}{3}tr(\mathbf{B})\mathbf{I}+dev~\mathbf{B}=\dfrac{1}{3}\mathbf{B}:(\mathbf{I}\otimes\mathbf{I})+dev~\mathbf{B}\\[5mm] ~\Longrightarrow~ &dev~\mathbf{B}=\mathbf{B}:(\stackrel{4s}{\mathbb{I}}-\dfrac{1}{3}(\mathbf{I}\otimes\mathbf{I})) =(\stackrel{4s}{\mathbb{I}}-\dfrac{1}{3}(\mathbf{I}\otimes\mathbf{I})):\mathbf{B} \end{align*}   B=31tr(B)I+dev B=31B:(II)+dev Bdev B=B:(I4s31(II))=(I4s31(II)):B { I m ≜ 1 3 I ⊗ I I s ≜ I 4 s − I m   ⟹   I 4 s : I m = I m : I 4 s = I m \begin{equation} \begin{cases} \mathbb{I}_m\triangleq\dfrac{1}{3}\bold{I}\otimes\bold{I}\\[4mm] \mathbb{I}_s\triangleq\stackrel{4s}{\mathbb{I}}-\mathbb{I}_m \end{cases} ~\Longrightarrow~ \stackrel{4s}{\mathbb I}:{\mathbb I}_m={\mathbb I}_m:\stackrel{4s}{\mathbb I}={\mathbb I}_m \end{equation} Im31IIIsI4sIm  I4s:Im=Im:I4s=Im对称仿射量的偏量部分与球量部分可分别表示为
{ d e v   B = I s : B = B : I s B − d e v   B = I m : B = B : I m \begin{equation} \begin{cases} dev~\mathbf{B}= \mathbb{I}_s:\mathbf{B}=\mathbf{B}:\mathbb{I}_s\\[4mm] \mathbf{B}-dev~\mathbf{B}=\mathbb{I}_m:\mathbf{B}=\mathbf{B}:\mathbb{I}_m \end{cases} \end{equation} dev B=Is:B=B:IsBdev B=Im:B=B:Im
此外, I m {\mathbb I}_m Im 与四阶投影张量 I s {\mathbb I}_s Is 间还满足:
{ I m : I m = 1 9 I ⊗ I : I ⊗ I = 1 9 ( t r   I ) I ⊗ I = I m I s : I s = ( I 4 s − I m ) : ( I 4 s − I m ) = I s I m : I s = I s : I m = 0 \begin{cases} \mathbb{I}_m:\mathbb{I}_m=\dfrac{1}{9}\bold{I}\otimes\bold{I}:\bold{I}\otimes\bold{I} =\dfrac{1}{9}(tr~\bold{I})\bold{I}\otimes\bold{I}=\mathbb{I}_m\\\\ \mathbb{I}_s:\mathbb{I}_s=(\stackrel{4s}{\mathbb{I}}-\mathbb{I}_m):(\stackrel{4s}{\mathbb{I}}-\mathbb{I}_m) =\mathbb{I}_s\\\\ \mathbb{I}_m:\mathbb{I}_s=\mathbb{I}_s:\mathbb{I}_m=0 \end{cases} Im:Im=91II:II=91(tr I)II=ImIs:Is=(I4sIm):(I4sIm)=IsIm:Is=Is:Im=0

10-11 23:31