在Scikit-Learn中,cross_val_score函数支持多种不同的评分标准(scoring参数)。以下是一些常见的评分标准及其应用场景:

  • 分类问题:

  •   accuracy: 准确率
      roc_auc, roc_auc_ovo, roc_auc_ovr: ROC曲线下面积
      average_precision: 平均精度
      f1, f1_macro, f1_micro, f1_weighted: F1分数
      precision, precision_macro, precision_micro, precision_weighted: 精度
      recall, recall_macro, recall_micro, recall_weighted: 召回率
      balanced_accuracy: 平衡准确率
    
  • 回归问题:

  •   neg_mean_squared_error: 均方误差(负值)
      neg_mean_absolute_error: 平均绝对误差(负值)
      neg_root_mean_squared_error: 均方根误差(负值)
      neg_median_absolute_error: 中位绝对误差(负值)
      r2: 决定系数(R²)
      explained_variance: 解释方差
      max_error: 最大误差
    
  • 聚类问题:

  •   adjusted_rand_score: 调整后的Rand指数
      homogeneity_score: 同质性得分
      completeness_score: 完整性得分
      v_measure_score: V-measure得分
      adjusted_mutual_info_score: 调整后的互信息得分
      normalized_mutual_info_score: 标准化互信息得分
    

每文一语

11-29 21:49