在Scikit-Learn中,cross_val_score函数支持多种不同的评分标准(scoring参数)。以下是一些常见的评分标准及其应用场景:
-
分类问题:
-
accuracy: 准确率 roc_auc, roc_auc_ovo, roc_auc_ovr: ROC曲线下面积 average_precision: 平均精度 f1, f1_macro, f1_micro, f1_weighted: F1分数 precision, precision_macro, precision_micro, precision_weighted: 精度 recall, recall_macro, recall_micro, recall_weighted: 召回率 balanced_accuracy: 平衡准确率
-
回归问题:
-
neg_mean_squared_error: 均方误差(负值) neg_mean_absolute_error: 平均绝对误差(负值) neg_root_mean_squared_error: 均方根误差(负值) neg_median_absolute_error: 中位绝对误差(负值) r2: 决定系数(R²) explained_variance: 解释方差 max_error: 最大误差
-
聚类问题:
-
adjusted_rand_score: 调整后的Rand指数 homogeneity_score: 同质性得分 completeness_score: 完整性得分 v_measure_score: V-measure得分 adjusted_mutual_info_score: 调整后的互信息得分 normalized_mutual_info_score: 标准化互信息得分