Transformer的Pytorch实现有多个开源版本,基本大同小异,我参考的是这份英译中的工程。
为了代码讲解的直观性,还是先把Transformer的结构贴上来。
针对上述结构,我们从粗到细地来看一下模型的代码实现。
1. 模型整体构造
class Transformer(nn.Module):
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(Transformer, self).__init__()
self.encoder = encoder # 编码端,论文中包含了6个Encoder模块
self.decoder = decoder # 解码端,也是6个Decoder模块
self.src_embed = src_embed # 输入Embedding模块
self.tgt_embed = tgt_embed # 输出Embedding模块
self.generator = generator # 最终的Generator层,包括Linear+softmax
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
def forward(self, src, tgt, src_mask, tgt_mask):
# encoder的结果作为decoder的memory参数传入,进行decode
return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)
通过make_model()函数对Transformer模型进行构造:
def make_model(src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
c = copy.deepcopy
# 实例化Attention对象
attn = MultiHeadedAttention(h, d_model).to(DEVICE)
# 实例化FeedForward对象
ff = PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
# 实例化PositionalEncoding对象
position = PositionalEncoding(d_model, dropout).to(DEVICE)
# 实例化Transformer模型对象
model = Transformer(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE), c(position)),
Generator(d_model, tgt_vocab)).to(DEVICE)
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
# 这里初始化采用的是nn.init.xavier_uniform
nn.init.xavier_uniform_(p)
return model.to(DEVICE)
那么,接下来,我们就对以上涉及到的模块进行一一实现。
2. MutiHeadedAttention
MutiHeadedAttention()实现的是论文中的如下结构:
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
# h为head数量,保证可以整除,论文中该值是8
assert d_model % h == 0
# 得到一个head的attention表示维度,论文中是512/8=64
self.d_k = d_model // h
# head数量
self.h = h
# 定义4个全连接函数,供后续作为WQ,WK,WV矩阵和最后h个多头注意力矩阵concat之后进行变换的矩阵WO
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
# query的第一个维度值为batch size
nbatches = query.size(0)
# 将embedding层乘以WQ,WK,WV矩阵(均为全连接)
# 并将结果拆成h块,然后将第二个和第三个维度值互换
query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 调用attention函数计算得到h个注意力矩阵跟value的乘积,以及注意力矩阵
x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
# 将h个多头注意力矩阵concat起来(注意要先把h变回到第三维的位置)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
# 使用self.linears中构造的最后一个全连接函数来存放变换后的矩阵进行返回
return self.linears[-1](x)
其中,主体attention函数的定义在该模块之外,主要实现下面这个结构,当然,是批量实现h个这样的结构:
def attention(query, key, value, mask=None, dropout=None):
# 将query矩阵的最后一个维度值作为d_k
d_k = query.size(-1)
# 将key的最后两个维度互换(转置),才能与query矩阵相乘,乘完了还要除以d_k开根号
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
# 如果存在要进行mask的内容,则将那些为0的部分替换成一个很大的负数
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
# 将mask后的attention矩阵按照最后一个维度进行softmax,归一化到0~1
p_attn = F.softmax(scores, dim=-1)
# 如果dropout参数设置为非空,则进行dropout操作
if dropout is not None:
p_attn = dropout(p_attn)
# 最后返回注意力矩阵跟value的乘积,以及注意力矩阵
return torch.matmul(p_attn, value), p_attn
3. PositionwiseFeedForward
接下来,我们按照make_model()函数中的顺序,来看看PositionwiseFeedForward模块。该模块相对较简单,公式如下:
代码如下:
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
4. PositionalEncoding
位置编码在论文中的实现公式如下:
代码:
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# 初始化一个size为 max_len(设定的最大长度)×embedding维度 的全零矩阵
# 来存放所有小于这个长度位置对应的positional embedding
pe = torch.zeros(max_len, d_model, device=DEVICE)
# 生成一个位置下标的tensor矩阵(每一行都是一个位置下标)
"""
形式如:
tensor([[0.],
[1.],
[2.],
[3.],
[4.],
...])
"""
position = torch.arange(0., max_len, device=DEVICE).unsqueeze(1)
# 这里幂运算太多,我们使用exp和log来转换实现公式中pos下面要除以的分母(由于是分母,要注意带负号),已经忘记中学对数操作的同学请自行补课哈
div_term = torch.exp(torch.arange(0., d_model, 2, device=DEVICE) * -(math.log(10000.0) / d_model))
# 根据公式,计算各个位置在各embedding维度上的位置纹理值,存放到pe矩阵中
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
# 加1个维度,使得pe维度变为:1×max_len×embedding维度
# (方便后续与一个batch的句子所有词的embedding批量相加)
pe = pe.unsqueeze(0)
# 将pe矩阵以持久的buffer状态存下(不会作为要训练的参数)
self.register_buffer('pe', pe)
def forward(self, x):
# 将一个batch的句子所有词的embedding与已构建好的positional embeding相加
# (这里按照该批次数据的最大句子长度来取对应需要的那些positional embedding值)
x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
return self.dropout(x)
5. Encoder
make_model()函数中的Encoder是包含了整个Encoder端的模块,包括6个Encoder Layer。
class Encoder(nn.Module):
# layer = EncoderLayer
# N = 6
def __init__(self, layer, N):
super(Encoder, self).__init__()
# 复制N个encoder layer
self.layers = clones(layer, N)
# Layer Norm
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"""
使用循环连续eecode N次(这里为6次)
这里的Eecoderlayer会接收一个对于输入的attention mask处理
"""
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
以上代码中,在Encoder侧放置N=6个Encoder Layer,每个Encoder Layer的实现如下:
class EncoderLayer(nn.Module):
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
# SublayerConnection的作用就是把multi和ffn连在一起
# 只不过每一层输出之后都要先做Layer Norm再残差连接
self.sublayer = clones(SublayerConnection(size, dropout), 2)
# d_model
self.size = size
def forward(self, x, mask):
# 将embedding层进行Multi head Attention
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
# 注意到attn得到的结果x直接作为了下一层的输入
return self.sublayer[1](x, self.feed_forward)
上面的sublayer其实就是残差连接,但是跟架构图上有一点区别,是先做的LayerNorm,再做Residual,所以在整个Encoder最后,又加了一次LayerNorm,见本小节最上面一段代码。
class SublayerConnection(nn.Module):
"""
SublayerConnection的作用就是把Multi-Head Attention和Feed Forward层连在一起
只不过每一层输出之后都要先做Layer Norm再残差连接
sublayer是lambda函数
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
# 返回Layer Norm和残差连接后结果
return x + self.dropout(sublayer(self.norm(x)))
6. Decoder
Decoder的结构与Encoder相似,但在每个Decoder Layer上多了一个残差连接的子层;并且需要用到Encoder的输出,以及Mask操作。
class Decoder(nn.Module):
def __init__(self, layer, N):
super(Decoder, self).__init__()
# 复制N个encoder layer
self.layers = clones(layer, N)
# Layer Norm
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
"""
使用循环连续decode N次(这里为6次)
这里的Decoderlayer会接收一个对于输入的attention mask处理
和一个对输出的attention mask + subsequent mask处理
"""
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
layers中包括N=6个Decoder Layer,每个Decoder Layer的实现如下:
class DecoderLayer(nn.Module):
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
# Self-Attention
self.self_attn = self_attn
# 与Encoder传入的Context进行Attention
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
# 用m来存放encoder的最终hidden表示结果
m = memory
# Self-Attention:注意self-attention的q,k和v均为decoder hidden
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
# Context-Attention:注意context-attention的q为decoder hidden,而k和v为encoder hidden
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
7. Generator
Generator就是我们上一篇文章所讲的The Final Linear and Softmax Layer。它的作用是,先把Decoder的输出结果映射到词典大小的变量,再进行log_softmax操作计算出词典中各词的概率分布,从而为输出词语的选择提供依据(完整预测流程准备后面再开一篇讲)。
class Generator(nn.Module):
# vocab: tgt_vocab
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
# decode后的结果,先进入一个全连接层变为词典大小的向量
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
# 然后再进行log_softmax操作(在softmax结果上再做多一次log运算)
return F.log_softmax(self.proj(x), dim=-1)
8. Embedding
最后,我们来看一下Embedding。论文中对Embedding的描述较简单,只有如下寥寥几句话,可能因为是在翻译领域比较成熟的技术了吧。
代码中对该功能的实现如下:
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
# Embedding层
self.lut = nn.Embedding(vocab, d_model)
# Embedding维数
self.d_model = d_model
def forward(self, x):
# 返回x对应的embedding矩阵(需要乘以math.sqrt(d_model))
return self.lut(x) * math.sqrt(self.d_model)
好了,今天的解读就先到这里。有更多补充内容,见后续更新。