import matplotlib.pyplot as plt
from scipy import sparse
import numpy as np
import matplotlib as mt
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_iris
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier iris=load_iris()
#print(iris)
X_train,X_test,y_train,y_test = train_test_split(iris['data'],iris['target'],random_state=0)
iris_dataframe = pd.DataFrame(X_train,columns=iris.feature_names)
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
# KNeighborsClassifier(algorithm='auto',leaf_size=30,metric='minkowski',
# metric_params=None,n_jobs=1,n_neighbors=1,p=2,weights='uniform')
X_new = np.array([[5,2.9,1,0.2]])
print("X_new.shape:{}".format(X_new.shape))
prediction = knn.predict(X_new)
print("Prediction X_new:{}".format(prediction))
print("prediction X_new belong to {}".format(iris['target_names'][prediction])) #评估模型
#计算精度方法1
print("test score1:{:.2f}".format(knn.score(X_test,y_test)))
#计算精度方法2
y_pred = knn.predict(X_test)
print("test score2:{:.2f}".format(np.mean(y_pred == y_test)))

输出:

Prediction X_new:[0]
prediction X_new belong to ['setosa']
test score1:0.97
test score2:0.97

 测试精度

knn的邻居设置会影响测试精度,举例说明:

import matplotlib.pyplot as plt
import mglearn
from scipy import sparse
import numpy as np
import matplotlib as mt
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_breast_cancer
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier cancer = load_breast_cancer()
X_train,X_test,y_train,y_test =train_test_split(cancer.data,cancer.target,stratify=cancer.target,random_state=66)
training_accuracy=[]
test_accuracy=[]
neighbors_settings = range(1,11)
for n_neighbors in neighbors_settings:
clf = KNeighborsClassifier(n_neighbors=n_neighbors)
clf.fit(X_train,y_train)
training_accuracy.append(clf.score(X_train,y_train))
test_accuracy.append(clf.score(X_test,y_test)) plt.plot(neighbors_settings,training_accuracy,label="training accuracy")
plt.plot(neighbors_settings,test_accuracy,label="test accuracy")
plt.xlabel("n_neighbors")
plt.ylabel("accuracy")
plt.legend()
plt.show()

用KNN实现iris的4分类问题&测试精度-LMLPHP

可以看出,6是最优。

KNN算法的优点是简单可解释性强,

缺点是:

  • 样本大的时候性能不好
  • 特征多(几百个+)的时候效果不好
  • 稀疏数据集不适用
05-27 10:16