From Java To Kotlin, 空安全、扩展、函数、Lambda
概述(Summarize)
Kotlin 是什么?
Kotlin 出自于捷克一家软件研发公司 JetBrains ,这家公司开发出很多优秀的 IDE,如 IntelliJ IDEA、DataGrip 等都是它的杰作,包括 Google 官方的 Android IDE -- Android Studio ,也是 IntelliJ IDEA 的插件版。
Kotlin 源于 JetBrains 的圣彼得堡团队,名称取自圣彼得堡附近的一个小岛 ( Kotlin Island ) ,和 Java一样用岛屿命名,JetBrains 在 2010 年首次推出 Kotlin 编程语言,并在次年将之开源。
- Kotlin 是一种在 Java 虚拟机上运行的静态类型编程语言,被称之为 Android 世界的Swift。
- Kotlin 可以编译成Java字节码。也可以编译成 JavaScript,方便在没有 JVM 的设备上运行。
- 在Google I/O 2017中,Google 宣布 Kotlin 成为 Android 官方开发语言,替代 Java 语言。
Kotlin 代码会被编译成Java字节码,所以和 Java 兼容
可以做什么?
Android 官方开发语言从Java变为Kotlin,Java 有哪些问题?
空引用(Null references):Java 中的 null 值是经常导致程序运行出错的原因之一,因为 Java 不支持空安全。
更少的函数式编程特性:Java 语言在函数式编程方面的支持相对较弱,虽然 Java 8 引入了 Lambda 表达式和 Stream API,但是 Kotlin 语言在这方面的支持更加全面和友好。
不够灵活,缺乏扩展能力:我们不能给 第三方 SDK 中的classes 或者 interfaces 增加新的方法。。
语法繁琐,不够简洁:Java 语言比 Kotlin 语言更为冗长,需要写更多的代码来完成相同的任务,这可能会降低开发效率。
Kotlin的优点
- 简约:使用一行代码创建一个包含
getters
、setters
、equals()
、hashCode()
、toString()
以及copy()
的 POJO: - 安全:彻底告别那些烦人的 NullPointerException
- 互操作性: Kotlin 可以与 Java 混合编程,Kotlin 和 Java 可以相互调用,目标是 100% 兼容。
Kotlin 特性(Features)
- 空安全(Null safety)
- 类型推断(Type inference)
- 数据类 (Data classes)
- 扩展函数 (Extension functions)
- 智能转换(Smart casts)
- 字符串模板(String templates)
- 单例(Singletons)
- 函数类型 (Function Type )
- Lambda 表达式
- 高阶函数(Primary constructors)
- 函数字面量和内联函数(Function literals & inline functions)
- 类委托(Class delegation)
- 等等......
基本语法 (Basic Syntax )
- 变量(Variables)
- 基本数据类型( Basic Data Type )
- 空安全(Null Safety )
- 函数声明( Define Function )
- 让函数更好的调用( Making functions easier to call )
变量(Variables)
在 Java/C 当中,如果我们要声明变量,我们必须要声明它的类型,后面跟着变量的名称和对应的值,然后以分号结尾。就像这样:
Integer price = 100;
而 Kotlin 则不一样,我们要使用val
或者是var
这样的关键字作为开头,后面跟“变量名称”,接着是“变量类型”和“赋值语句”,最后是分号结尾。就像这样:
/*
关键字 变量类型
↓ ↓ */
var price: Int = 100; /*
↑ ↑
变量名 变量值 */
在 Kotlin 里面,代码末尾的分号省略不写,就像这样:
var price = 100 // 默认推导类型为: Int
另外,由于 Kotlin 支持类型推导,大部分情况下,我们的变量类型可以省略不写,就像这样:
var price = 100 // 默认推导类型为: Int
var 声明的变量,我们叫做可变变量,它对应 Java 里的普通变量。
val 声明的变量,我们叫做只读变量,它相当于 Java 里面的 final 变量。
var price = 100
price = 101
val num = 1
num = 2 // 编译器报错
var, val 反编译成 Java :
我们已经知道了 val 属性只有 getter,只能保证引用不变,不能保证内容不变。例如,下面的代码:
class PersonZ {
var name = "zhang"
var age = 30
val nickname: String
get() {
return if (age > 30) "laozhang" else "xiaozhang"
}
fun grow() {
age += 1
}
属性 nickname 的值并非不可变,当调用 grow() 方法时,它的值会从 "xiaozhang" 变为 "laozhang",
不过因为没有 setter,所以无法直接给 nickname 赋值
编译时常量
const 只能修饰没有自定义 getter 的 val 属性,而且它的值必须在编译时确定。
val time = System.currentTimeMillis()
// 这种会报错
const val constTime = System.currentTimeMillis()
基本数据类型( Basic Data Type )
Kotlin 的基本数值类型包括 Byte、Short、Int、Long、Float、Double 等。
在 Kotlin 语言体系当中,是没有原始类型这个概念的。这也就意味着,在 Kotlin 里,一切都是对象。
空安全(Null Safety )
既然 Kotlin 中的一切都是对象,那么对象就有可能为空。如果我写这样的代码:
val i: Double = null // 编译器报错
以上的代码并不能通过 Kotlin 编译。
这是因为 Kotlin 强制要求开发者在定义变量的时候,指定这个变量是否可能为 null。
对于可能为 null 的变量,我们需要在声明的时候,在变量类型后面加一个问号“?”:
val i: Double = null // 编译器报错
val j: Double? = null // 编译通过
并且由于 Kotlin 对可能为空的变量类型做了强制区分,这就意味着,“可能为空的变量”无法直接赋值给“不可为空的变量”,反过来 “不可为空的变量” 可以赋值给“可能为空的变量” 。
var i: Double = 1.0
var j: Double? = null
i = j // 编译器报错
j = i // 编译通过
这么设计的原因是,从集合逻辑上:可能为空 包含 不可为空
而如果我们实在有这样的需求,也不难实现,只要做个判断即可:
var i: Double = 1.0
val j: Double? = null
if (j != null) {
i = j // 编译通过
}
函数声明( Define Function )
在 Kotlin 当中,函数的声明与 Java 不太一样。
Java:
public String helloFunction(@NotNull String name) {
return "Hello " + name + " !";
}
Kotlin :
/*
关键字 函数名 参数类型 返回值类型
↓ ↓ ↓ ↓ */
fun helloFunction(name: String): String {
return "Hello $name !"
}/* ↑
花括号内为:函数体
*/
- 使用了 fun 关键字来定义函数;
- 返回值类型,紧跟在参数的后面,这点和 Java 不一样。
如果函数体中只有一行代码,可以简写
- return可以省略
- { } 花括号可以省略
- 直接用
=
连接,变成一种类似 变量赋值的 函数形式
fun helloFunton(name:String):String = "Hello $name !"
我们称之为单表达式函数
由于Kotlin支持类型推导,返回值类型可以省略:
fun helloFunton(name:String):= "Hello $name !"
这样看起来就更简洁了。
让函数更好的调用( Making functions easier to call )
命名参数/具名参数 (Named arguments)
以前面的函数为例子,我们调用它:
helloFunction("Kotlin")
和 Java 一样。
不过,Kotlin 提供了一些新的特性,如命名函数参数
举个例子,现在有一个函数:
fun createUser(
name: String,
age: Int,
gender: Int,
friendCount: Int,
feedCount: Int,
likeCount: Long,
commentCount: Int
) {
//..
}
如果像 Java 那样调用:
createUser("Tom", 30, 1, 78, 2093, 10937, 3285)
就要严格按照参数顺序传参:
- 参数顺序调换,参数就传错了,不好维护。
- 当参数是一堆数字,很难知道数字对应的形参,可读性不高。
Kotlin 参数调用:
createUser(
name = "Tom",
age = 30,
gender = 1,
friendCount = 78,
feedCount = 2093,
likeCount = 10937,
commentCount = 3285
)
我们把函数的形参加了进来,形参和实参用 =
连接,建立了两者的对应关系。这样可读性更强。
如果想修改某个参数例如feedCount
也可以很方便的定位到参数。 这样易维护
参数默认值(Default arguments)
fun createUser(
name: String,
age: Int,
gender: Int = 1,
friendCount: Int = 0,
feedCount: Int = 0,
likeCount: Long = 0L,
commentCount: Int = 0
) {
//..
}
gender、likeCount 等参数被赋予了默认值,当我们调用时,有些有默认值的参数就可以不传参,Kotlin编译器自动帮我们填上默认值。
createUser(
name = "Tom",
age = 30,
friendCount = 50
)
在 Java 当中要实现类似的逻辑,我们就必须手动定义新的“3 个参数的 createUser 函数”,或者是使用 Builder 设计模式。
Classes and Objects
- 类 (Class)
- 抽象类 (Abstract Class)
- 继承(Extend)
- 接口和实现 (Interface and implements)
- 嵌套类和内部类( Nested and Inner Classes )
- 数据类(Data Class )
- object 关键字
- 扩展 (Extension)
类 (Class)
Java
public class Person {
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
// 属性 name 没有 setter
public String getName() {
return name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
Class
Kotlin
class Person(val name: String, var age: Int)
Kotlin 定义类,同样使用 class 关键字。
Kotlin 定义的类在默认情况下是 public 的。
编译器会帮我们生成“构造函数”,
对于类当中的属性,Kotlin 编译器也会根据实际情况,自动生成 getter 和 setter。
和Java相比 Kotlin 定义一个类足够简洁。
抽象类与继承
抽象类 (Abstract Class)
abstract class Person(val name: String) {
abstract fun walk()
// 省略
}
继承(Extend)
// Java 的继承
// ↓
public class MainActivity extends Activity {
@Override
void onCreate(){ ... }
}
// Kotlin 的继承
// ↓
class MainActivity : AppCompatActivity() {
override fun onCreate() { ... }
}
接口和实现 (Interface and implements)
Kotlin 当中的接口(interface),和 Java 也是大同小异的,它们都是通过 interface 这个关键字来定义的。
interface Behavior {
fun walk()
}
class Person(val name: String): Behavior {
override fun walk() {
// walk
}
// ...
}
可以看到在以上的代码中,我们定义了一个新的接口 Behavior,它里面有一个需要被实现的方法 walk,然后我们在 Person 类当中实现了这个接口。
Kotlin 的继承和接口实现语法基本上是一样的。
Kotlin 的接口,跟 Java 最大的差异就在于,接口的方法可以有默认实现,同时,它也可以有属性。
interface Behavior {
// 接口内的可以有属性
val canWalk: Boolean
// 接口方法的默认实现
fun walk() {
if (canWalk) {
// do something
}
}
}
class Person(val name: String): Behavior {
// 重写接口的属性
override val canWalk: Boolean
get() = true
}
我们在接口方法当中,为 walk() 方法提供了默认实现,如果 canWalk 为 true,才执行 walk 内部的具体行为。
Kotlin 当中的接口,被设计得更加强大了。
在 Java 1.8 版本当中,Java接口也引入了类似的特性。
嵌套类和内部类( Nested and Inner Classes )
Java 当中,最常见的嵌套类分为两种:非静态内部类、静态内部类。Kotlin 当中也有一样的概念。
class A {
class B {
}
}
以上代码中,B 类,就是 A 类里面的嵌套类。
注意: 无法在 B 类当中访问 A 类的属性和成员方法。
因为Kotlin 默认嵌套类(B类)是一个静态内部类
Kotlin 嵌套类反编译成 Java 代码:
public class JavaOuterInnerClass2 {
// 内部类
public class InnerClass {
}
// 静态内部类
public static final class StaticInnerClass{
}
}
通过 javac 命令 编译成 class 文件后:
- InnerClass
- StaticInnerClass
通过.class 可以发现,
$InnerClass
持有外部类的引用。
$StaticInnerClass
不持有外部类的引用。
Java 当中的嵌套类,默认情况下,没有 static关键字 时,它就是一个内部类,这样的内部类是会持有外部类的引用的。
所以,这样的设计在 Java 当中会非常容易出现内存泄漏! 而我们之所以会犯这样的错误,往往只是因为忘记加static
关键字。
Kotlin 则恰好相反,在默认情况下,嵌套类变成了静态内部类,而这种情况下的嵌套类是不会持有外部类引用的。只有当我们真正需要访问外部类成员的时候,我们才会加上 inner 关键字。这样一来,默认情况下,开发者是不会犯错的,只有手动加上 inner
关键字之后,才可能会出现内存泄漏,而当我们加上 inner 之后,其实往往也就能够意识到内存泄漏的风险了。
数据类(Data Class )
Koltin 数据类 ,就是用于存放数据的类,等价于 POJO (Plain Ordinary Java Object)。要定义一个数据类,我们只需要在普通的类前面加上一个关键字 data
,就可以把它变成一个"数据类"。
// 数据类当中,最少要有一个属性
↓
data class Person(val name: String, val age: Int)
编译器会为数据类自动生成一些 POJO 常用的方法
- getter()
- setter()
- equals();
- hashCode();
- toString();
- componentN() 函数;
- copy()。
Koltin 数据类反编译成 Java代码:
object 关键字
fun
关键字代表了定义函数,class
关键字代表了定义类,这些都是固定的,object
关键字,却有三种迥然不同的语义,分别可以定义:
- 匿名内部类;
- 单例模式;
- 伴生对象。
之所以会出现这样的情况,是因为 Kotlin 的设计者认为:
这三种语义本质上都是在定义一个类的同时还创建了对象。
在这样的情况下,与其分别定义三种不同的关键字,还不如将它们统一成 object 关键字。
object:匿名内部类
在 Java 开发当中,我们经常需要写类似这样的代码:
public interface Runnable {
void run();
}
public static void main(String[] args) {
// 创建Runnable对象并使用匿名内部类重写run方法
Runnable runnable = new Runnable() {
public void run() {
System.out.println("Runnable is running");
}
};
// 创建Thread对象并将Runnable作为参数传入
Thread thread = new Thread(runnable);
// 启动线程
thread.start();
}
这是典型的匿名内部类写法。
在 Kotlin 当中,我们会使用 object
关键字来创建匿名内部类。
interface Runnable {
fun run()
}
@JvmStatic
fun main(args: Array<String>) {
// 创建Runnable对象并使用匿名内部类重写run方法
val runnable: Runnable = object : Runnable {
override fun run() {
println("Runnable is running")
}
}
// 创建Thread对象并将Runnable作为参数传入
val thread: Thread = Thread(runnable)
// 启动线程
thread.start()
}
object:单例模式
在 Kotlin 当中,要实现单例模式其实非常简单,我们直接用 object 修饰类即可:
object UserManager {
fun login() {}
}
可以看出,Kotlin 生成单例,代码量非常少
反编译后的 Java 代码:
public final class UserManager {
public static final UserManager INSTANCE;
static {
UserManager var0 = new UserManager();
INSTANCE = var0;
}
private UserManager() {}
public final void login() {}
}
Kotlin 编译器会将其转换成静态代码块的单例模式。
虽然具有简洁的优点,但同时也存在两个缺点。
- 不支持懒加载。
- 不支持传参构造单例。
object:伴生对象
Kotlin 当中没有 static 关键字,所以我们没有办法直接定义静态方法和静态变量。不过,Kotlin 还是为我们提供了伴生对象,来帮助实现静态方法和变量。
Kotlin 伴生:
companion object {
const val LEARNING_FRAGMENT_INDEX = 0
fun jumpToMe(context: Context, index: Int) {
context.startActivity(Intent(context, TrainingHomeActivity::class.java).apply {
putExtra(FRAGMENT_INDEX, index)
})
}
}
反编译后的 Java 代码:
private Companion() { }
public static final Companion Companion = new Companion((DefaultConstructorMarker)null);
public static final int LEARNING_FRAGMENT_INDEX = 0;
public static final class Companion {
public final void jumpToMe(@NotNull Context context, int index) {
}
}
可以看到jumpToMe()并不是静态方法,它实际上是通过调用单例 Companion 的实例上的方法实现的。
扩展 (Extension)
Kotlin 的扩展(Extension),主要分为两种语法:
第一个是扩展函数,
第二个是扩展属性。
从语法上看,扩展看起来就像是我们从类的外部为它扩展了新的成员。
场景:假如我们想修改 JDK 当中的 String,想在它的基础上增加一个方法“lastElement()”来获取末尾元素,如果使用 Java,我们是无法通过常规手段实现的,因为我们没办法修改 JDK 的源代码。任何第三方提供的 SDK,我们都无权修改。
不过,借助 Kotlin 的扩展函数,我们就完全可以在语义层面,来为第三方 SDK 的类扩展新的成员方法和成员属性。
扩展函数
扩展函数,就是从类的外部扩展出来的一个函数,这个函数看起来就像是类的成员函数一样
Extension.kt
/*
① ② ③ ④
↓ ↓ ↓ ↓ */
fun String.lastElement(): Char? {
// ⑤
// ↓
if (this.isEmpty()) {
return null
}
return this[length - 1]
}
// 使用扩展函数
fun main() {
val msg = "Hello Wolrd"
// lastElement就像String的成员方法一样可以直接调用
val last = msg.lastElement() // last = d
}
- 注释①,fun关键字,代表我们要定义一个函数。也就是说,不管是定义普通 Kotlin 函数,还是定义扩展函数,我们都需要 fun 关键字。
- 注释②,“String.”,代表我们的扩展函数是为 String 这个类定义的。在 Kotlin 当中,它有一个名字,叫做接收者(Receiver),也就是扩展函数的接收方。
- 注释③,lastElement(),是我们定义的扩展函数的名称。
- 注释④,“Char?”,代表扩展函数的返回值是可能为空的 Char 类型。
- 注释⑤,“this.”,代表“具体的 String 对象”,当我们调用 msg.lastElement() 的时候,this 就代表了 msg。
扩展函数反编译成 Java 代码:
public final class StringExtKt {
@Nullable
public static final Character lastElement(@NotNull String $this$lastElement) {
// 省略
}
}
而如果我们将上面的 StringExtKt 修改成 StringUtils,它就变成了典型的 Java 工具类
public final class StringUtils {
public static final Character lastElement(String $this) {
// 省略
}
}
public static final void main() {
Character last = StringUtils.lastElement(msg);
}
所以 Kotlin 扩展函数 本质 上和 Java静态方法 是一样的。
只是编译器帮我们做了很多事情, 让代码写起来更简洁。
扩展属性
而扩展属性,则是在类的外部为它定义一个新的成员属性。
// 接收者类型
// ↓
val String.lastElement: Char?
get() = if (isEmpty()) {
null
} else {
get(length - 1)
}
fun main() {
val msg = "Hello Wolrd"
// lastElement就像String的成员属性一样可以直接调用
val last = msg.lastElement // last = d
}
扩展函数/扩展属性对比
转换成Java代码后,扩展函数和扩展属性代码一致,
和 StringUtils.lastElement(msg); }
用法是一样的。
扩展最主要的用途,就是用来取代 Java 当中的各种工具类,比如StringUtils、DateUtils 等等。
扩展函数在 Android 中的案例
用扩展函数简化Toast的用法:
这是Toast的标准用法,在界面上弹出一段文字提示,代码很长。
Toast.makeText(context, "This is Toast",Toast.LENGTH_SHORT).show()
还容易忘记调show()函数,造成Toast 没有弹出。
用扩展函数改写后:
fun String.showToast(context: Context) {
Toast.makeText(context, this, Toast.LENGTH_SHORT).show()
}
调用时,只需要在要展示的内容后面调一下showToast(),这样就简洁了很多。
"This is Toast".showToast(context)
函数与 Lambda 表达式
- 函数类型(Function Type)
- 函数引用 (Function reference)
- 高阶函数(Higher-order function)
- 匿名函数 (Anonymous function)
- Lambda Expressions
- 函数式(SAM)接口
- SAM 转换
- 高阶函数应用
函数类型(Function Type)
函数类型(Function Type)就是函数的类型,
在 Kotlin 的世界里,函数是一等公民
既然变量可以有类型,函数也可以有类型。
// (Int, Int) ->Float 这就是 add 函数的类型
// ↑ ↑ ↑
fun add(a: Int, b: Int): Float { return (a+b).toFloat() }
将第三行代码里的“ Int Int Float”抽出来,就可以确定该函数的类型。
将函数的“参数类型”和“返回值类型”抽象出来后,加上()
,->
符号加工后,就得到了“函数类型”。
(Int, Int) ->Float
就代表了参数类型是两个 Int,返回值类型为 Float 的函数类型。
函数引用(Function reference)
普通的变量有引用的概念,我们可以将一个变量赋值给另一个变量,这一点,在函数上也是同样适用的,函数也有引用,并且也可以赋值给变量。
前面定义的 add 函数,赋值给另一个函数变量时,不能直接用的,
需要使用::操作符 , 后跟要引用的函数名,获得函数引用后才可以去赋值。
fun add(a: Int, b: Int): Float { return (a+b).toFloat() }
// 变量 函数类型 函数引用
// ↑ ↑ ↑
val function: (Int, Int) -> Float = ::add
println(function(2, 3)) // 输出 5
加了双冒号:: , 这个函数才变成了一个对象,只有对象才能被赋值给变量。
fun add(a: Int, b: Int): Float { return (a+b).toFloat() }
fun testGaojie() {
println( ::add )
println( (::add)(2, 3) )// 输出 5.0
}
通过反编译成 Java 代码,可以看出。
::add
等价于 Function2 var1 = new Function2(...)
,
是一个FunctionN 类型的对象。
反编译成 Java代码:
public final void testGaojie() {
// println( ::add )
Function2 var1 = new Function2((GaojieFunTest)this) {
public Object invoke(Object var1, Object var2) {
return this.invoke(((Number)var1).intValue(), ((Number)var2).intValue());
}
public final float invoke(int p1, int p2) {
return ((GaojieFunTest)this.receiver).add(p1, p2);
}
};
System.out.println(var1);
// println( (::add)(2, 3) )
float var2 = ((Number)((Function2)(new Function2((GaojieFunTest)this) {
public Object invoke(Object var1, Object var2) {
return this.invoke(((Number)var1).intValue(), ((Number)var2).intValue());
}
public final float invoke(int p1, int p2) {
return ((GaojieFunTest)this.receiver).add(p1, p2);
}
})).invoke(2, 3)).floatValue();
System.out.println(var2);
}
fun add(a: Int, b: Int): Float { return (a+b).toFloat() }
fun testGaojie() {
println( add(2, 3) )// 输出 5.0
val function: (Int, Int) -> Float = ::add
println( function(2, 3) ) // 输出 5.0
println( function.invoke(2, 3) ) // 输出 5.0
}
将 testGaojie()转换成 Java 代码。可以看到在 Java 里,
函数类型被声明为普通的接口:一个函数类型的变量是FunctionN接口的一个实现。Kotlin标准库定义了一系列的接口,这些接口对应于不同参数数量的函数:Function0<R>
(没有参数的函数)、Function2<P1,P2,R>
(2个参数的函数)...Function22<P1,P2 ... R>
。每个接口定义了一个invoke()
方法,调用这个方法就会执行函数。一个函数类型的变量就是实现了对应的FunctionN接口的实现类的实例。实现类的invoke()
方法包含了 函数引用对应的函数的函数体
反编译成 Java代码:
public final void testGaojie() {
// println( add(2, 3) )
float var1 = this.add(2, 3);
System.out.println(var1);
// val function: (Int, Int) -> Float = ::add
Function2 function = (Function2)(new Function2((GaojieFunTest)this) {
// $FF: synthetic method
// $FF: bridge method
public Object invoke(Object var1, Object var2) {
return this.invoke(((Number)var1).intValue(), ((Number)var2).intValue());
}
public final float invoke(int p1, int p2) {
return ((GaojieFunTest)this.receiver).add(p1, p2);
}
});
// println( function(2, 3) ) // 输出 5.0
float var2 = ((Number)function.invoke(2, 3)).floatValue();
System.out.println(var2);
// println( function.invoke(2, 3) ) // 输出 5.0
var2 = ((Number)function.invoke(2, 3)).floatValue();
System.out.println(var2);
}
总结
Kotlin中,函数引用和函数调用有以下区别:
- 函数引用可以视为函数类型的变量,它持有函数的引用。而函数调用则执行函数本身。因此,可以将函数引用传递给其他函数,并在需要时执行。
- 函数引用可以简化调用代码,避免冗长的代码。而函数调用则需要编写完整的函数名称、参数和参数类型。
- 函数引用不会立即执行函数代码,只有在需要时才执行。而函数调用则立即执行函数代码。
例如,假设我们有一个名为“double”的函数,它接受一个整数并返回它的两倍。那么,函数引用和函数调用的代码如下所示:
val doubleFunc: (Int) -> Int = ::double
// 函数调用
val result = double(5) // 返回 10
在这个例子中,我们定义了一个函数引用,它可以在需要时传递给其他函数,也可以在需要时执行。
第 2 行代码我们还调用了函数“double”,它立即执行代码并返回结果。
高阶函数 (Higher-order function)
高阶函数的定义:高阶函数是将函数用作参数或者返回值的函数。
如果一个函数的参数类型是函数类型或者返回值类型是函数类型,那么这个函数就是就是高阶函数 。
或者说,如果一个函数的参数或者返回值,其中有一个是函数,那么这个函数就是高阶函数。
// 函数类型的变量 函数类型
// ↓ ↓
fun higherOrderAdd( a:Int,b: Int,block: (Int, Int) -> Float):Float{
// 函数类型的变量
// ↓
var result = block.invoke(a,b)
// 函数类型的变量
// ↓
var result2 = block(a,b)
println("result:$result")
return result
}
higherOrderAdd 有一个参数是函数类型,所以它是高阶函数
匿名函数
匿名函数看起来跟普通函数很相似,除了它的名字和参数类型被省略了外。
匿名函数示例如下:
fun(a :Int, b :Int) = a + b
上面的匿名函数是没法直接调用的,赋值给变量后才可以调用
val anonymousFunction = fun(a :Int, b :Int) = a + b
fun anonymousFunctionTest() {
higherOrderAdd(2,2,::add) // 函数引用
higherOrderAdd(2,2,anonymousFunction) // 函数变量
higherOrderAdd(2,2,
fun (a:Int,b:Int):Float{ return (a+b).toFloat()}) // 匿名函数
}
匿名函数本质上也是函数类型的对象,所以可以赋值给变量。
匿名函数不能单独声明在 ()外面,因为匿名函数是(函数的声明与函数引用合二为一)
// 具名函数不能直接赋值给变量,因为它不是对象
// 函数()内不能直接 声明 具名函数,因为它不是对象
这几个个报错是因为,匿名函数是把函数的声明与函数引用合二为一了,所以在需要匿名函数的地方,声明一个具名函数是报错的,正确的做法是改用具名函数引用 例如:
higherOrderAdd(2,2,::add) // 函数引用
Lambda
Java 在 Java8中引入的Lambda。
Java Lambda 的基本语法是
(parameters) -> expression
或(请注意语句的花括号)
(parameters) -> { statements; }
Kotlin 语言的是可以用 Lambda 表达式作为函数参数的,Lambda就是一小段可以作为参数传递的代码,那么到底多少代码才算一小段代码呢?Kotlin对此并没有进行限制,但是通常不建议在Lambda 表达式中编写太长的代码,否则可能会影响代码的可读性。
Lambda也可以理解为是匿名函数的简写。
我们来看一下Lambda表达式的语法结构:
{参数名1: 参数类型, 参数名2: 参数类型 -> 函数体}
首先最外层是一对花括号{ },如果有参数传入到Lambda表达式中的话,我们还需要声明参数列表,参数列表的结尾使用一个 '->' 符号 ,表示参数列表的结束以及函数体的开始,函数体中可以编写任意行代码,并且最后一行代码会自动作为Lambda表达式的返回值。
fun higherOrderAdd( a:Int,b: Int,block: (Int, Int) -> Float):Float{
var result = block(a,b)
println("result:$result")
return result
}
@Test
fun anonymousFunctionTest() {
higherOrderAdd(2,2,::add) // 函数引用
higherOrderAdd(3,3,
fun (a:Int,b:Int):Float{ return (a+b).toFloat()}) // 匿名函数
higherOrderAdd(4,4,
{ a:Int,b:Int -> (a+b).toFloat()}) // Lambda表达式
println(
fun (a:Int,b:Int):Float{ return (a+b).toFloat()}(5,5) ) // 匿名函数直接调用
println(
{ a:Int,b:Int -> (a+b).toFloat()}(5,5)) // Lambda表达式调用
}
相比匿名函数,lambda 表达式定义与引用函数更 简洁 。
函数式(SAM)接口
SAM 是 Single Abstract Method 的缩写,只有一个抽象方法的接口称为函数式接口或 SAM(单一抽象方法)接口。函数式接口可以有多个非抽象成员,但只能有一个抽象成员。
在Java 中可以用注解@FunctionalInterface 声明一个函数式接口:
@FunctionalInterface
public interface Runnable {
void run();
}
在 Kotlin 中可以用 fun 修饰符在 Kotlin 中声明一个函数式接口:
// 注意 interface 前的 fun
fun interface KRunnable {
fun invoke()
}
SAM 转换
对于函数式接口,可以通过 lambda 表达式实现 SAM 转换,从而使代码更简洁、更有可读性。
使用 lambda 表达式可以替代手动创建 实现函数式接口的类。 通过 SAM 转换, Kotlin 可以将 签名与接口的单个抽象方法的签名匹配的任何 lambda 表达式,转换成实现该接口的类的实例。
// 注意需用fun 关键字声明
fun interface Action{
fun run(str:String)
}
fun runAction(action: Action){
action.run("this run")
}
fun main() {
// 创建一个 实现函数式接口 的类 的实例(匿名内部类)
val action = object :Action{
override fun run(str: String) {
println(str)
}
}
// 传入实例,不使用 SAM 转换
runAction(action)
// 利用 Kotlin 的 SAM 转换,可以改为以下等效代码:
// 使用 Lambda表达式替代手动创建 实现函数式接口的类
runAction({
str-> println(str)
})
}
fun interface InterfaceApi{
fun run(str:String)
}
fun runInterface(interfaceApi: InterfaceApi){
interfaceApi.run("this run")
}
// 函数类型替代接口定义
fun factionTypeReplaceInterface(block:(String)->Unit){
block("this block run")
}
//=======Test====
// 普通函数,参数是函数式接口对象,传 函数类型对象 也是可以的
fun testFactionTypeReplaceInterface(){
val function:(String)->Unit = { println(it) }
runInterface(function) //普通函数,参数是函数式接口对象,传 函数类型对象 也是可以的
factionTypeReplaceInterface(function)
}
// 高阶函数, 参数是函数类型对象,传 是函数式接口对象 是不可以的。
fun testInterface(){
val interfaceApi:InterfaceApi = object :InterfaceApi{
override fun run(str: String) {
println(str)
}
}
runInterface(interfaceApi)
factionTypeReplaceInterface(interfaceApi)// 高阶函数, 参数是函数类型对象,传 是函数式接口对象 是不可以的。
}
普通函数,参数是函数式接口对象,传 函数类型对象 也是可以的
反过来不可以:
高阶函数, 参数是函数类型对象,传 是函数式接口对象 是不可以的。
前面说的都是函数传不同的参数类型。
这张图中的三处报错都是,类型不匹配。
说明:
作为函数实参时, 函数类型对象 单向代替 函数式接口对象。
但是在创建对象时, 函数类型、函数式接口两种类型是泾渭分明的。
高阶函数应用
在Android开发时,我们经常会遇到给自定义View绑定点击事件的场景。以往通常的做法如下:
// CustomView.java
// 成员变量
private OnContextClickListener mOnContextClickListener;
// 监听手指点击内容事件
public void setOnContextClickListener(OnContextClickListener l) {
mOnContextClickListener = l;
}
// 为传递这个点击事件,专门定义了一个接口
public interface OnContextClickListener {
void onContextClick(View v);
}
// 设置手指点击事件
customView.setOnContextClickListener(new View.OnContextClickListener() {
@Override
public void onContextClick(View v) {
gotoPreview();
}
});
看完了这两段代码之后,你有没有觉得这样的代码会很啰嗦?因为,真正逻辑只有一行代码:gotoPreview(),而实际上我们却写了 6 行代码。
用 Kotlin 高阶函数 改写后
//View.kt
// (View) -> Unit 就是「函数类型 」
// ↑ ↑
var mOnContextClickListener: ((View) -> Unit)? = null
// 高阶函数
fun setOnContextClickListener(l: (View) -> Unit) {
mOnClickListener = l;
}
如果我们将前面Java写的例子的核心逻辑提取出来,会发现这样才是最简单明了的:
// { gotoPreview() } 就是 Lambda
// ↑
customView.setOnContextClickListener({ gotoPreview() })
Kotlin 语言的设计者是怎么做的呢?实际上他们是分成了两个部分:
- 用函数类型替代接口定义;
- 用 Lambda 表达式作为函数参数。
Kotlin 中引入高阶函数会带来几个好处:一个是针对定义方,代码中减少了接口类的定义;另一个是对于调用方来说,代码也会更加简洁。这样一来,就大大减少了代码量,提高了代码可读性,并通过减少类的数量,提高了代码的性能。
最后总结
思考讨论
本文主要分享了 空安全、扩展函数、高阶函数、Lambda,
本文分享的Kotlin内容,您认为哪些特性是最有趣或最有用的?
参考文档:
- Kotlin 语言中文站
- 《Kotlin实战》
- 《Kotlin核心编程》
- 《Kotlin编程权威指南》
- 《Java 8实战》