引入
过程
我们看到这个题,自然而然会想到区间 DP,即朴素的做法。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll r[600], g[600];
ll dp[600][600];
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; ++ i) {
scanf("%lld", &r[i]);
r[i + n] = r[i];
g[i] = g[i - 1] + r[i];
dp[i][i] = 0;
}
for (int i = n + 1; i <= 2 * n; ++ i) {
dp[i][i] = 0;
g[i] = g[i - 1] + r[i];
}
for (int l = 1; l < n; ++ l) {
for (int i = 1, j = i + l; i < n * 2 && j <= n * 2; ++ i, j = i + l) {
dp[i][j] = 100000000;
for (int k = i; k < j; ++ k) {
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + g[j] - g[i - 1]);
}
}
}
ll minn = 0x3f3f3f3f;
for (int i = 1; i <= n; ++ i) {
minn = min(minn, dp[i][i + n - 1]);
}
printf("%lld", minn);
return 0;
}
交上去后,你会发现,RE 了
Garsia-Wachs 算法的总时间复杂度为
= =,这个算法应用范围十分有限,因此学的价值不是很高,“会用” + “知道有这个东西” 就行了
关于上面那道引入题的代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read() {
ll x = 0;
int fg = 0;
char ch = getchar();
while (ch < '0' || ch > '9') {
fg |= (ch == '-');
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
return fg ? ~x + 1 : x;
}
const int N = 4e4 + 5;
int n, ans;
vector<int> g;
int merge() {
int k = g.size() - 2;
for (int i = 0; i <= k; ++ i) {
if (g[i] <= g[i + 2]) {
k = i;
break;
}
}
int tmp = g[k] + g[k + 1];
g.erase(g.begin() + k);
g.erase(g.begin() + k);
int t = -1;
for (int i = k - 1; i >= 0; -- i) {
if (g[i] >= tmp) {
t = i;
break;
}
}
g.insert(g.begin() + t + 1, tmp);
return tmp;
}
int main() {
n = read();
for (int i = 1; i <= n; ++ i) {
g.emplace_back(read());
}
for (int i = 1; i < n; ++ i) {
ans += merge();
}
printf("%d\n", ans);
return 0;
}