🍀特征缩放的重要性

标准化归一化是两种常见的可以将特征值调整到同一尺度的方法。

🌱归一化

在下面式子中,使用最大最小缩放方法归一化一个样本的第i个特征:

x n o r m ( i ) = x i − x m i n x m a x − x m i n x_{norm}^{(i)}=\frac{x^i-x_{min}}{x_{max}-x_{min}} xnorm(i)=xmaxxminxixmin
其中, x i x^{i} xi是一个特定样本的第i个特征, x m i n x_min xmin是所有数据第i个特征中的最小值, x m a x x_max xmax是所有数据第i个特征中的最大值, x n o r m i x_{norm}^{i} xnormi是特定样本缩放后的第i个特征。
使用最大最小缩放进行数据归一化是一种常用的方法,在需要特征值位于有界区间时非常有用。

要注意的是,只能训练数据拟合MinMaxScaler类,再用拟合后的参数转换测试数据集或任何新的数据样本,这一点非常重要。

🌱标准化

标准化可以用以下表达式表示:

x s t d ( i ) = x i − μ x σ x x_{std}^{(i)}=\frac{x^{i}- \mu_x}{\sigma_x} xstd(i)=σxxiμx
这里 μ x \mu_x μx是第i个特征列的样本均值, σ x \sigma_x σx是第i个特征列的标准差。
对于由数字0到5组成的简单样本数据集,下面展示标准化和归一化两种特征缩放方法之间的差异:

同样,要注意的是,只能训练数据拟合StandardScaler类,再用拟合后的参数转换测试数据集或任何新的数据样本,这一点非常重要。

🌱更高级的缩放方法

🌸导入数据集&将数据集划分为训练集和测试集

import pandas as pd
df=pd.read_excel("D:\A_data\Data_wine数据\wine.xlsx")
from sklearn.model_selection import train_test_split
X,y=df.iloc[:,1:].values,df.iloc[:,0].values
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.3,random_state=0,stratify=y)

🌸Sklearn-Learn算法实现归一化

from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()
X_train_norm=mms.fit_transform(X_train)
X_test_norm=mms.transform(X_test)

【机器学习7】特征缩放-LMLPHP

🌸Sklearn-Learn算法实现标准化

from sklearn.preprocessing import StandardScaler
stdsc=StandardScaler()
X_train_std=stdsc.fit_transform(X_train)
X_test_std=stdsc.transform(X_test)

【机器学习7】特征缩放-LMLPHP

08-25 09:24