1.问题背景与描述
2.解题思路分析
2.1 问题一的分析
请从收货量、发货量、快递数量增长/减少趋势、相关性等多角度考虑,建立数学模型,对各站点城市的重要程度进行综合排序,并给出重要程度排名前5的站点城市名称。
2.2 问题二的分析
建立数学模型,预测2019年4月18日和2019年4月19日各“发货-收货”站点城市之间快递运输数量,以及当日所有“发货-收货”站点城市之间的总快递运输数量,并在表2中填入指定的站点城市之间的快递运输数量,以及当日所有“发货-收货”站点城市之间的总快递运输数量。
2.3 问题三的分析
附件2为该快递公司记录的2020年4月28日—2023年4月27日的快递运输数量。由于受到突发事件影响,部分城市之间快递线路无法正常运输,导致站点城市之间无法正常发货或收货(无数据表示无法正常收发货,0表示无发货需求)。请利用附件2数据,建立数学模型,预测2023年4月28日和2023年4月29日可正常“发货-收货”的站点城市对(发货城市-收货城市),并判断表3中指定的站点城市对是否能正常发货,如果能正常发货,给出对应的快递运输数量,并将结果填入表3。
2.4 问题四的分析
图1给出了所有站点城市间的铁路运输网络,铁路运输成本由以下公式计算:。在本题中,假设实际装货量允许超过额定装货量。所有铁路的固定成本、额定装货量在附件3中给出。在运输快递时,要求每个“发货-收货”站点城市对之间使用的路径数不超过5条,请建立数学模型,给出该快递公司成本最低的运输方案。利用附件2和附件3的数据,计算该公司2023年4月23—27日每日的最低运输成本,填入表4。
目标函数:成本最低 Min W
决策变量:收发货的运输方案Xij;
约束条件:
- 1.站点城市对之间使用的路径数不超过5条
- 2.额定装货限制
- 3.固定成本优化
本质上是一个0-1整数优化模型,可以利用LINGO编程或者matlab求解。
2.5 问题五的分析
请利用附件2中的数据,不考虑已剔除数据、无发货需求数据、无法正常发货数据,解决以下问题。
(1) 建立数学模型,按季度估计固定需求常数,并验证其准确性。将指定季度、指定“发货-收货”站点城市对的固定需求常数,以及当季度所有“发货-收货”城市对的固定需求常数总和,填入表5。
(2) 给出非固定需求概率分布估计方法,并将指定季度、指定“发货-收货”站点城市对的非固定需求均值、标准差,以及当季度所有“发货-收货”城市对的非固定需求均值总和、非固定需求标准差总和,填入表5。